000 02834nam a22003855i 4500
001 281383
003 MX-SnUAN
005 20160429154103.0
007 cr nn 008mamaa
008 150903s2006 ne | o |||| 0|eng d
020 _a9781402037207
_99781402037207
024 7 _a10.1007/1402037201
_2doi
035 _avtls000334470
039 9 _a201509030246
_bVLOAD
_c201404120754
_dVLOAD
_c201404090533
_dVLOAD
_y201402041149
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA641-670
100 1 _aBejancu, Aurel.
_eautor
_9307009
245 1 0 _aFoliations and Geometric Structures /
_cby Aurel Bejancu, Hani Reda Farran.
264 1 _aDordrecht :
_bSpringer Netherlands,
_c2006.
300 _ax, 300 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aMathematics and Its Applications ;
_v580
500 _aSpringer eBooks
505 0 _aGeometry of Distributions on a Manifold -- Structural and Transversal Geometry of Foliations -- Foliations on Semi-Riemannian Manifolds -- Parallel Foliations -- Foliations Induced by Geometric Structures -- A Gauge Theory on a Vector Bundle.
520 _aThis self-contained book starts with the basic material on distributions and foliations. It then gradually introduces and builds the tools needed for studying the geometry of foliated manifolds. The main theme of the book is to investigate the interrelations between foliations of a manifold on the one hand, and the many geometric structures that the manifold may admit on the other hand. Among these structures are: affine, Riemannian, semi-Riemannian, Finsler, symplectic, complex and contact structures. Using these structures, the book presents interesting classes of foliations whose geometry is very rich and promising. These include the classes of: Riemannian, totally geodesic, totally umbilical, minimal, parallel non-degenerate, parallel totally - null, parallel partially - null, symmetric, transversally symmetric, Lagrange, totally real and Legendre foliations. Some of these classes appear for the first time in the literature in book form. Finally, the vertical foliation of a vector bundle is used to develop a gauge theory on the total space of a vector bundle.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aFarran, Hani Reda.
_eautor
_9307010
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781402037191
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/1-4020-3720-1
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281383
_d281383