000 03535nam a22003855i 4500
001 281453
003 MX-SnUAN
005 20160429154106.0
007 cr nn 008mamaa
008 150903s2011 xxu| o |||| 0|eng d
020 _a9780817680923
_99780817680923
024 7 _a10.1007/9780817680923
_2doi
035 _avtls000333700
039 9 _a201509030218
_bVLOAD
_c201404130517
_dVLOAD
_c201404092306
_dVLOAD
_y201402041117
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA164-167.2
100 1 _aSoifer, Alexander.
_eeditor.
_9303562
245 1 0 _aRamsey Theory :
_bYesterday, Today, and Tomorrow /
_cedited by Alexander Soifer.
250 _a1.
264 1 _aBoston, MA :
_bBirkhäuser Boston :
_bImprint: Birkhäuser,
_c2011.
300 _axiv, 190 páginas 28 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Mathematics ;
_v285
500 _aSpringer eBooks
505 0 _aHow This Book Came into Being -- Table of Contents -- Ramsey Theory before Ramsey, Prehistory and Early History: An Essay in 13 Parts -- Eighty Years of Ramsey R(3, k). . . and Counting! -- Ramsey Numbers Involving Cycles -- On the function of Erd?s and Rogers -- Large Monochromatic Components in Edge Colorings of Graphs -- Szlam’s Lemma: Mutant Offspring of a Euclidean Ramsey Problem: From 1973, with Numerous Applications -- Open Problems in Euclidean Ramsey Theory -- Chromatic Number of the Plane and Its Relatives, History, Problems and Results: An Essay in 11 Parts -- Euclidean Distance Graphs on the Rational Points -- Open Problems Session.
520 _aRamsey theory is a relatively “new,” approximately 100 year-old direction of fascinating mathematical thought that touches on many classic fields of mathematics such as combinatorics, number theory, geometry, ergodic theory, topology, combinatorial geometry, set theory, and measure theory. Ramsey theory possesses its own unifying ideas, and some of its results are among the most beautiful theorems of mathematics. The underlying theme of Ramsey theory can be formulated as: any finite coloring of a large enough system contains a monochromatic subsystem of higher degree of organization than the system itself, or as T.S. Motzkin famously put it, absolute disorder is impossible. Ramsey Theory: Yesterday, Today, and Tomorrow explores the theory’s history, recent developments, and some promising future directions through invited surveys written by prominent researchers in the field. The first three surveys provide historical background on the subject; the last three address Euclidean Ramsey theory and related coloring problems. In addition, open problems posed throughout the volume and in the concluding open problem chapter will appeal to graduate students and mathematicians alike. Contributors: J. Burkert, A. Dudek, R.L. Graham, A. Gyárfás, P.D. Johnson, Jr., S.P. Radziszowski, V. Rödl, J.H. Spencer, A. Soifer, E. Tressler.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817680916
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-8092-3
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281453
_d281453