000 | 03535nam a22003855i 4500 | ||
---|---|---|---|
001 | 281453 | ||
003 | MX-SnUAN | ||
005 | 20160429154106.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2011 xxu| o |||| 0|eng d | ||
020 |
_a9780817680923 _99780817680923 |
||
024 | 7 |
_a10.1007/9780817680923 _2doi |
|
035 | _avtls000333700 | ||
039 | 9 |
_a201509030218 _bVLOAD _c201404130517 _dVLOAD _c201404092306 _dVLOAD _y201402041117 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA164-167.2 | |
100 | 1 |
_aSoifer, Alexander. _eeditor. _9303562 |
|
245 | 1 | 0 |
_aRamsey Theory : _bYesterday, Today, and Tomorrow / _cedited by Alexander Soifer. |
250 | _a1. | ||
264 | 1 |
_aBoston, MA : _bBirkhäuser Boston : _bImprint: Birkhäuser, _c2011. |
|
300 |
_axiv, 190 páginas 28 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aProgress in Mathematics ; _v285 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aHow This Book Came into Being -- Table of Contents -- Ramsey Theory before Ramsey, Prehistory and Early History: An Essay in 13 Parts -- Eighty Years of Ramsey R(3, k). . . and Counting! -- Ramsey Numbers Involving Cycles -- On the function of Erd?s and Rogers -- Large Monochromatic Components in Edge Colorings of Graphs -- Szlam’s Lemma: Mutant Offspring of a Euclidean Ramsey Problem: From 1973, with Numerous Applications -- Open Problems in Euclidean Ramsey Theory -- Chromatic Number of the Plane and Its Relatives, History, Problems and Results: An Essay in 11 Parts -- Euclidean Distance Graphs on the Rational Points -- Open Problems Session. | |
520 | _aRamsey theory is a relatively “new,” approximately 100 year-old direction of fascinating mathematical thought that touches on many classic fields of mathematics such as combinatorics, number theory, geometry, ergodic theory, topology, combinatorial geometry, set theory, and measure theory. Ramsey theory possesses its own unifying ideas, and some of its results are among the most beautiful theorems of mathematics. The underlying theme of Ramsey theory can be formulated as: any finite coloring of a large enough system contains a monochromatic subsystem of higher degree of organization than the system itself, or as T.S. Motzkin famously put it, absolute disorder is impossible. Ramsey Theory: Yesterday, Today, and Tomorrow explores the theory’s history, recent developments, and some promising future directions through invited surveys written by prominent researchers in the field. The first three surveys provide historical background on the subject; the last three address Euclidean Ramsey theory and related coloring problems. In addition, open problems posed throughout the volume and in the concluding open problem chapter will appeal to graduate students and mathematicians alike. Contributors: J. Burkert, A. Dudek, R.L. Graham, A. Gyárfás, P.D. Johnson, Jr., S.P. Radziszowski, V. Rödl, J.H. Spencer, A. Soifer, E. Tressler. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817680916 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-8092-3 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c281453 _d281453 |