000 03351nam a22003615i 4500
001 281494
003 MX-SnUAN
005 20160429154108.0
007 cr nn 008mamaa
008 150903s2009 xxu| o |||| 0|eng d
020 _a9780387875750
_99780387875750
024 7 _a10.1007/9780387875750
_2doi
035 _avtls000333170
039 9 _a201509030800
_bVLOAD
_c201404122357
_dVLOAD
_c201404092136
_dVLOAD
_y201402041104
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
100 1 _aWeintraub, Steven H.
_eautor
_9302891
245 1 0 _aGalois Theory /
_cby Steven H. Weintraub.
264 1 _aNew York, NY :
_bSpringer New York,
_c2009.
300 _axiv, 212 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aUniversitext
500 _aSpringer eBooks
505 0 _ato Galois Theory -- Field Theory and Galois Theory -- Development and Applications of Galois Theory -- Extensions of the Field of Rational Numbers -- Further Topics in Field Theory -- Transcendental Extensions.
520 _aThe book discusses classical Galois theory in considerable generality, treating fields of characteristic zero and of positive characteristic with consideration of both separable and inseparable extensions, but with a particular emphasis on algebraic extensions of the field of rational numbers. While most of the book is concerned with finite extensions, it discusses algebraic closure and infinite Galois extensions, and concludes with a new chapter on transcendental extensions. Key topics and features of this second edition: - Approaches Galois theory from the linear algebra point of view, following Artin; - Presents a number of applications of Galois theory, including symmetric functions, finite fields, cyclotomic fields, algebraic number fields, solvability of equations by radicals, and the impossibility of solution of the three geometric problems of Greek antiquity. Review from the first edition: "The text offers the standard material of classical field theory and Galois theory, though in a remarkably original, unconventional and comprehensive manner … . the book under review must be seen as a highly welcome and valuable complement to existing textbook literature … . It comes with its own features and advantages … it surely is a perfect introduction to this evergreen subject. The numerous explaining remarks, hints, examples and applications are particularly commendable … just as the outstanding clarity and fullness of the text." (Zentralblatt MATH, Vol. 1089 (15), 2006) Steven H. Weintraub is a Professor of Mathematics at Lehigh University and the author of seven books. This book grew out of a graduate course he taught at Lehigh. He is also the author of Algebra: An Approach via Module Theory (with W. A. Adkins).
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387875743
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-87575-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281494
_d281494