000 | 03218nam a22003855i 4500 | ||
---|---|---|---|
001 | 281499 | ||
003 | MX-SnUAN | ||
005 | 20160429154108.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2011 xxu| o |||| 0|eng d | ||
020 |
_a9780817681142 _99780817681142 |
||
024 | 7 |
_a10.1007/9780817681142 _2doi |
|
035 | _avtls000333706 | ||
039 | 9 |
_a201509030218 _bVLOAD _c201404130518 _dVLOAD _c201404092307 _dVLOAD _y201402041117 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA319-329.9 | |
100 | 1 |
_aAmbrosetti, Antonio. _eautor _9307222 |
|
245 | 1 | 3 |
_aAn Introduction to Nonlinear Functional Analysis and Elliptic Problems / _cby Antonio Ambrosetti, David Arcoya. |
264 | 1 |
_aBoston : _bBirkhäuser Boston, _c2011. |
|
300 |
_axii, 199 páginas 12 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aProgress in Nonlinear Differential Equations and Their Applications ; _v82 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aNotation -- Preliminaries -- Some Fixed Point Theorems -- Local and Global Inversion Theorems -- Leray-Schauder Topological Degree -- An Outline of Critical Points -- Bifurcation Theory -- Elliptic Problems and Functional Analysis -- Problems with A Priori Bounds -- Asymptotically Linear Problems -- Asymmetric Nonlinearities -- Superlinear Problems -- Quasilinear Problems -- Stationary States of Evolution Equations -- Appendix A Sobolev Spaces -- Exercises -- Index -- Bibliography. | |
520 | _aThis self-contained textbook provides the basic, abstract tools used in nonlinear analysis and their applications to semilinear elliptic boundary value problems. By first outlining the advantages and disadvantages of each method, this comprehensive text displays how various approaches can easily be applied to a range of model cases. An Introduction to Nonlinear Functional Analysis and Elliptic Problems is divided into two parts: the first discusses key results such as the Banach contraction principle, a fixed point theorem for increasing operators, local and global inversion theory, Leray–Schauder degree, critical point theory, and bifurcation theory; the second part shows how these abstract results apply to Dirichlet elliptic boundary value problems. The exposition is driven by numerous prototype problems and exposes a variety of approaches to solving them. Complete with a preliminary chapter, an appendix that includes further results on weak derivatives, and chapter-by-chapter exercises, this book is a practical text for an introductory course or seminar on nonlinear functional analysis. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aArcoya, David. _eautor _9307223 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817681135 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-8114-2 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c281499 _d281499 |