000 03218nam a22003855i 4500
001 281499
003 MX-SnUAN
005 20160429154108.0
007 cr nn 008mamaa
008 150903s2011 xxu| o |||| 0|eng d
020 _a9780817681142
_99780817681142
024 7 _a10.1007/9780817681142
_2doi
035 _avtls000333706
039 9 _a201509030218
_bVLOAD
_c201404130518
_dVLOAD
_c201404092307
_dVLOAD
_y201402041117
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA319-329.9
100 1 _aAmbrosetti, Antonio.
_eautor
_9307222
245 1 3 _aAn Introduction to Nonlinear Functional Analysis and Elliptic Problems /
_cby Antonio Ambrosetti, David Arcoya.
264 1 _aBoston :
_bBirkhäuser Boston,
_c2011.
300 _axii, 199 páginas 12 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Nonlinear Differential Equations and Their Applications ;
_v82
500 _aSpringer eBooks
505 0 _aNotation -- Preliminaries -- Some Fixed Point Theorems -- Local and Global Inversion Theorems -- Leray-Schauder Topological Degree -- An Outline of Critical Points -- Bifurcation Theory -- Elliptic Problems and Functional Analysis -- Problems with A Priori Bounds -- Asymptotically Linear Problems -- Asymmetric Nonlinearities -- Superlinear Problems -- Quasilinear Problems -- Stationary States of Evolution Equations -- Appendix A Sobolev Spaces -- Exercises -- Index -- Bibliography.
520 _aThis self-contained textbook provides the basic, abstract tools used in nonlinear analysis and their applications to semilinear elliptic boundary value problems. By first outlining the advantages and disadvantages of each method, this comprehensive text displays how various approaches can easily be applied to a range of model cases. An Introduction to Nonlinear Functional Analysis and Elliptic Problems is divided into two parts: the first discusses key results such as the Banach contraction principle, a fixed point theorem for increasing operators, local and global inversion theory, Leray–Schauder degree, critical point theory, and bifurcation theory; the second part shows how these abstract results apply to Dirichlet elliptic boundary value problems.  The exposition is driven by numerous prototype problems and exposes a variety of approaches to solving them. Complete with a preliminary chapter, an appendix that includes further results on weak derivatives, and chapter-by-chapter exercises, this book is a practical text for an introductory course or seminar on nonlinear functional analysis.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aArcoya, David.
_eautor
_9307223
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817681135
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-8114-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281499
_d281499