000 03617nam a22003855i 4500
001 281500
003 MX-SnUAN
005 20190906112425.0
007 cr nn 008mamaa
008 150903s2011 xxu| o |||| 0|eng d
020 _a9780817681173
_99780817681173
024 7 _a10.1007/9780817681173
_2doi
035 _avtls000333707
039 9 _a201509030217
_bVLOAD
_c201404130518
_dVLOAD
_c201404092307
_dVLOAD
_y201402041117
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA370-380
100 1 _9350048
_aRabinowitz, Paul.
_eautor
245 1 0 _aExtensions of Moser–Bangert Theory :
_bLocally Minimal Solutions /
_cby Paul H. Rabinowitz, Edward W. Stredulinsky.
264 1 _aBoston :
_bBirkhäuser Boston,
_c2011.
300 _aviii, 208 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Nonlinear Differential Equations and Their Applications ;
_v81
500 _aSpringer eBooks
505 0 _a1 Introduction -- Part I: Basic Solutions -- 2 Function Spaces and the First Renormalized Functional -- 3 The Simplest Heteroclinics -- 4 Heteroclinics in x1 and x2 -- 5 More Basic Solutions -- Part II: Shadowing Results -- 6 The Simplest Cases -- 7 The Proof of Theorem 6.8 -- 8 k-Transition Solutions for k > 2 -- 9 Monotone 2-Transition Solutions -- 10 Monotone Multitransition Solutions -- 11 A Mixed Case -- Part III: Solutions of (PDE) Defined on R^2 x T^{n-2} -- 12 A Class of Strictly 1-Monotone Infinite Transition Solutions of (PDE) -- 13 Solutions of (PDE) with Two Transitions in x1 and Heteroclinic Behavior in x2.
520 _aWith the goal of establishing a version for partial differential equations (PDEs) of the Aubry–Mather theory of monotone twist maps, Moser and then Bangert studied solutions of their model equations that possessed certain minimality and monotonicity properties. This monograph presents extensions of the Moser–Bangert approach that include solutions of a family of nonlinear elliptic PDEs on Rn and an Allen–Cahn PDE model of phase transitions. After recalling the relevant Moser–Bangert results, Extensions of Moser–Bangert Theory pursues the rich structure of the set of solutions of a simpler model case, expanding upon the studies of Moser and Bangert to include solutions that merely have local minimality properties. Subsequent chapters build upon the introductory results, making the monograph self contained. Part I introduces a variational approach involving a renormalized functional to characterize the basic heteroclinic solutions obtained by Bangert. Following that, Parts II and III employ these basic solutions together with constrained minimization methods to construct multitransition heteroclinic and homoclinic solutions on R×Tn-1 and R2×Tn-2, respectively, as local minima of the renormalized functional. The work is intended for mathematicians who specialize in partial differential equations and may also be used as a text for a graduate topics course in PDEs.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aStredulinsky, Edward W.
_eautor
_9307225
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817681166
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-8117-3
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281500
_d281500