000 03723nam a22003735i 4500
001 281505
003 MX-SnUAN
005 20160429154108.0
007 cr nn 008mamaa
008 150903s2011 xxu| o |||| 0|eng d
020 _a9780817682415
_99780817682415
024 7 _a10.1007/9780817682415
_2doi
035 _avtls000333712
039 9 _a201509030218
_bVLOAD
_c201404130519
_dVLOAD
_c201404092308
_dVLOAD
_y201402041118
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA431
100 1 _aThomson, Gavin R.
_eautor
_9307233
245 1 0 _aStationary Oscillations of Elastic Plates :
_bA Boundary Integral Equation Analysis /
_cby Gavin R. Thomson, Christian Constanda.
264 1 _aBoston :
_bBirkhäuser Boston,
_c2011.
300 _axiii, 230 páginas 4 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aPreface -- The Mathematical Models -- Layer Potentials -- The Nonhomogenous System -- The Question of Uniqueness for the Exterior Problems -- The Eigenfrequency Spectra of the Interior Problems -- The Question of Solvability -- The Direct Boundary Equation Formulation -- Modified Fundamental Solutions -- Problems with Robin Boundary Conditions -- The Transmission Problem -- The Null Field Equations -- Appendices -- References -- Index.
520 _aElliptic partial differential equations are important for approaching many problems in mathematical physics, and boundary integral methods play a significant role in their solution. This monograph investigates the latter as they arise in the theory characterizing stationary vibrations of thin elastic plates. The techniques used reduce the complexity of classical three-dimensional elasticity to a system of two independent variables, using eigenfrequencies to model problems with flexural-vibrational elastic body deformation and simplifying these problems to manageable, uniquely solvable integral equations. In under 250 pages, Stationary Oscillations of Elastic Plates develops an impressive amount of theoretical machinery. After introducing the equations describing the vibrations of elastic plates in the first chapter, the book proceeds to explore topics including the single-layer and double-layer plate potentials; the Newtonian potential; the exterior boundary value problems; the direct boundary integral equation method; the Robin boundary value problems; the boundary-contact problem; the null field equations. Throughout, ample time is allotted to laying the groundwork necessary for establishing the existence and uniqueness of solutions to the problems discussed. The book is meant for readers with a knowledge of advanced calculus and some familiarity with functional analysis. It is a useful tool for professionals in pure and applied mathematicians, as well as for theoretical physicists and mechanical engineers with practices involving elastic plates. Graduate students in these fields would also benefit from the monograph as a supplementary text for courses relating to theories of elasticity or flexural vibrations.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aConstanda, Christian.
_eautor
_9305511
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817682408
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-8241-5
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281505
_d281505