000 | 03193nam a22003735i 4500 | ||
---|---|---|---|
001 | 281557 | ||
003 | MX-SnUAN | ||
005 | 20160429154111.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2013 xxu| o |||| 0|eng d | ||
020 |
_a9780817683948 _99780817683948 |
||
024 | 7 |
_a10.1007/9780817683948 _2doi |
|
035 | _avtls000333762 | ||
039 | 9 |
_a201509030218 _bVLOAD _c201404130529 _dVLOAD _c201404092318 _dVLOAD _y201402041119 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA71-90 | |
100 | 1 |
_ade Moura, Carlos A. _eeditor. _9307334 |
|
245 | 1 | 4 |
_aThe Courant–Friedrichs–Lewy (CFL) Condition : _b80 Years After Its Discovery / _cedited by Carlos A. de Moura, Carlos S. Kubrusly. |
264 | 1 |
_aBoston : _bBirkhäuser Boston : _bImprint: Birkhäuser, _c2013. |
|
300 |
_axii, 237 páginas 118 ilustraciones, 40 ilustraciones en color. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
500 | _aSpringer eBooks | ||
505 | 0 | _aForeword -- Stability of Different Schemes -- Mathematical Intuition: Poincaré, Pólya, Dewey.- Three-dimensional Plasma Arc Simulation using Resistive MHD -- A Numerical Algorithm for Ambrosetti-Prodi Type Operators -- On the Quadratic Finite Element Approximation of 1-D Waves: Propagation, Observation, Control, and Numerical Implementation -- Space-Time Adaptive Mutilresolution Techniques for Compressible Euler Equations -- A Framework for Late-time/stiff Relaxation Asymptotics -- Is the CFL Condition Sufficient? Some Remarks -- Fast Chaotic Artificial Time Integration -- Appendix A -- Hans Lewy's Recovered String Trio -- Appendix B -- Appendix C -- Appendix D. | |
520 | _aThis volume comprises a carefully selected collection of articles emerging from and pertinent to the 2010 CFL-80 conference in Rio de Janeiro, celebrating the 80th anniversary of the Courant–Friedrichs–Lewy (CFL) condition. A major result in the field of numerical analysis, the CFL condition has influenced the research of many important mathematicians over the past eight decades, and this work is meant to take stock of its most important and current applications. The Courant–Friedrichs–Lewy (CFL) Condition: 80 Years After its Discovery will be of interest to practicing mathematicians, engineers, physicists, and graduate students who work with numerical methods. Contributors: U. Ascher B. Cockburn E. Deriaz M.O. Domingues S.M. Gomes R. Hersh R. Jeltsch D. Kolomenskiy H. Kumar L.C. Lax P. Lax P. LeFloch A. Marica O. Roussel K. Schneider J. Tiexeira Cal Neto C. Tomei K. van den Doel E. Zuazua | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aKubrusly, Carlos S. _eeditor. _9306855 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817683931 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-8394-8 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c281557 _d281557 |