000 03217nam a22003735i 4500
001 281636
003 MX-SnUAN
005 20170705134205.0
007 cr nn 008mamaa
008 150903s2005 ne | o |||| 0|eng d
020 _a9781402036316
_99781402036316
024 7 _a10.1007/1402036310
_2doi
035 _avtls000334426
039 9 _a201509030246
_bVLOAD
_c201404120746
_dVLOAD
_c201404090525
_dVLOAD
_y201402041148
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA273.A1-274.9
100 1 _aBreuer, L.
_eautor
_9307489
245 1 3 _aAn Introduction to Queueing Theory and Matrix-Analytic Methods /
_cby L. Breuer, D. Baum.
264 1 _aDordrecht :
_bSpringer Netherlands,
_c2005.
300 _axiv, 271 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aQueues: The Art of Modelling -- Markov Chains and Queues in Discrete Time -- Homogeneous Markov Processes on Discrete State Spaces -- Markovian Queues in Continuous Time -- Markovian Queueing Networks -- Renewal Theory -- Markov Renewal Theory -- Semi-Markovian Queues -- Phase-Type Distributions -- Markovian Arrival Processes -- The GI/PH/1 Queue -- The BMAP/G/1 Queue -- Discrete Time Approaches -- Spatial Markovian Arrival Processes.
520 _aThe textbook contains the records of a two-semester course on queueing theory, including an introduction to matrix-analytic methods. The course is directed to last year undergraduate and first year graduate students of applied probability and computer science, who have already completed an introduction to probability theory. Its purpose is to present material that is close enough to concrete queueing models and their applications, while providing a sound mathematical foundation for their analysis. A prominent part of the book will be devoted to matrix-analytic methods. This is a collection of approaches which extend the applicability of Markov renewal methods to queueing theory by introducing a finite number of auxiliary states. For the embedded Markov chains this leads to transition matrices in block form resembling the structure of classical models. Matrix-analytic methods have become quite popular in queueing theory during the last twenty years. The intention to include these in a students' introduction to queueing theory has been the main motivation for the authors to write the present book. Its aim is a presentation of the most important matrix-analytic concepts like phase-type distributions, Markovian arrival processes, the GI/PH/1 and BMAP/G/1 queues as well as QBDs and discrete time approaches.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aBaum, D.
_eautor
_9307490
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781402036309
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/1-4020-3631-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281636
_d281636