000 03412nam a22003735i 4500
001 281655
003 MX-SnUAN
005 20160429154114.0
007 cr nn 008mamaa
008 150903s2013 xxu| o |||| 0|eng d
020 _a9780817684037
_99780817684037
024 7 _a10.1007/9780817684037
_2doi
035 _avtls000333765
039 9 _a201509030218
_bVLOAD
_c201404130529
_dVLOAD
_c201404092319
_dVLOAD
_y201402041119
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA401-425
100 1 _aMichel, Volker.
_eautor
_9307526
245 1 0 _aLectures on Constructive Approximation :
_bFourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball /
_cby Volker Michel.
264 1 _aBoston :
_bBirkhäuser Boston :
_bImprint: Birkhäuser,
_c2013.
300 _axvI, 326 páginas 7 ilustraciones, 5 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aApplied and Numerical Harmonic Analysis
500 _aSpringer eBooks
505 0 _aIntroduction: the Problem to be Solved -- Part I Basics -- Basic Fundamentals—What You Need to Know -- Approximation of Functions on the Real Line -- Part II Approximation on the Sphere -- Basic Aspects -- Fourier Analysis -- Spherical Splines -- Spherical Wavelet Analysis -- Spherical Slepian Functions -- Part III Approximation on the 3D Ball -- Orthonormal Bases -- Splines -- Wavelets for Inverse Problems on the 3D Ball -- The Regularized Functional Matching Pursuit (RFMP) -- References -- Index.
520 _aLectures on Constructive Approximation: Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball focuses on spherical problems as they occur in the geosciences and medical imaging. It comprises the author’s lectures on classical approximation methods based on orthogonal polynomials and selected modern tools such as splines and wavelets. Methods for approximating functions on the real line are treated first, as they provide the foundations for the methods on the sphere and the ball and are useful for the analysis of time-dependent (spherical) problems. The author then examines the transfer of these spherical methods to problems on the ball, such as the modeling of the Earth’s or the brain’s interior. Specific topics covered include: * the advantages and disadvantages of Fourier, spline, and wavelet methods * theory and numerics of orthogonal polynomials on intervals, spheres, and balls * cubic splines and splines based on reproducing kernels * multiresolution analysis using wavelets and scaling functions This textbook is written for students in mathematics, physics, engineering, and the geosciences who have a basic background in analysis and linear algebra. The work may also be suitable as a self-study resource for researchers in the above-mentioned fields.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817684020
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-8403-7
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281655
_d281655