000 | 02814nam a22003615i 4500 | ||
---|---|---|---|
001 | 281713 | ||
003 | MX-SnUAN | ||
005 | 20170705134205.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2012 xxu| o |||| 0|eng d | ||
020 |
_a9780817682712 _99780817682712 |
||
024 | 7 |
_a10.1007/9780817682712 _2doi |
|
035 | _avtls000333722 | ||
039 | 9 |
_a201509030218 _bVLOAD _c201404130521 _dVLOAD _c201404092310 _dVLOAD _y201402041118 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA613-613.8 | |
100 | 1 |
_aTorres del Castillo, Gerardo F. _eautor _9306777 |
|
245 | 1 | 0 |
_aDifferentiable Manifolds : _bA Theoretical Physics Approach / _cby Gerardo F. Torres del Castillo. |
264 | 1 |
_aBoston : _bBirkhäuser Boston, _c2012. |
|
300 |
_aviii, 275 páginas 20 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
500 | _aSpringer eBooks | ||
505 | 0 | _aPreface.-1 Manifolds.- 2 Lie Derivatives -- 3 Differential Forms -- 4 Integral Manifolds -- 5 Connections -- 6. Riemannian Manifolds -- 7 Lie Groups -- 8 Hamiltonian Classical Mechanics -- References.-Index. | |
520 | _aThis textbook gives a concise introduction to the theory of differentiable manifolds, focusing on their applications to differential equations, differential geometry, and Hamiltonian mechanics. The work’s first three chapters introduce the basic concepts of the theory, such as differentiable maps, tangent vectors, vector and tensor fields, differential forms, local one-parameter groups of diffeomorphisms, and Lie derivatives. These tools are subsequently employed in the study of differential equations (Chapter 4), connections (Chapter 5), Riemannian manifolds (Chapter 6), Lie groups (Chapter 7), and Hamiltonian mechanics (Chapter 8). Throughout, the book contains examples, worked out in detail, as well as exercises intended to show how the formalism is applied to actual computations and to emphasize the connections among various areas of mathematics. Differentiable Manifolds is addressed to advanced undergraduate or beginning graduate students in mathematics or physics. Prerequisites include multivariable calculus, linear algebra, differential equations, and (for the last chapter) a basic knowledge of analytical mechanics. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817682705 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-8271-2 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c281713 _d281713 |