000 | 03739nam a22003615i 4500 | ||
---|---|---|---|
001 | 281758 | ||
003 | MX-SnUAN | ||
005 | 20160429154119.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2011 xxu| o |||| 0|eng d | ||
020 |
_a9780817682804 _99780817682804 |
||
024 | 7 |
_a10.1007/9780817682804 _2doi |
|
035 | _avtls000333725 | ||
039 | 9 |
_a201509030218 _bVLOAD _c201404130522 _dVLOAD _c201404092311 _dVLOAD _y201402041118 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA299.6-433 | |
100 | 1 |
_aMelnikov, Yuri A. _eautor _9307748 |
|
245 | 1 | 0 |
_aGreen's Functions and Infinite Products : _bBridging the Divide / _cby Yuri A. Melnikov. |
264 | 1 |
_aBoston : _bBirkhäuser Boston, _c2011. |
|
300 |
_ax, 165 páginas 32 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
500 | _aSpringer eBooks | ||
505 | 0 | _aINTRODUCTION -- CHAPTER 1: Infinite Products & Elementary Functions -- 1.1 Classical Euler representations -- 1.2 Alternative derivations -- 1.3 Other elementary functions -- 1.4 Chapter exercises -- CHAPTER 2: Green's Functions for the Laplace Equation -- 2.1 Construction by the method of images -- 2.2 Conformal mapping method -- 2.3 Chapter exercises -- CHAPTER 3: Green's Functions for ODE -- 3.1 Construction by defining properties -- 3.2 Method of variation of parameters -- 3.3 Chapter exercises -- CHAPTER 4: Method of Eigenfunction Expansion -- 4.1 Hilbert's theorem -- 4.2 Cartesian coordinates -- 4.3 Polar coordinates -- 4.4 Chapter exercises -- CHAPTER 5: New Infinite Product Representations -- 5.1 Method of images extends frontiers -- 5.2 Trigonometric functions -- 5.3 Hyperbolic functions -- 5.4 Chapter exercises -- HINTS AND ANSWERS TO CHAPTER EXERCISES -- REFERENCES -- INDEX. | |
520 | _aThis textbook accounts for two seemingly unrelated mathematical topics drawn from two separate areas of mathematics that have no evident points of contiguity. Green's function is a topic in partial differential equations and covered in most standard texts, while infinite products are used in mathematical analysis. For the two-dimensional Laplace equation, Green's functions are conventionally constructed by either the method of images, conformal mapping, or the eigenfunction expansion. The present text focuses on the construction of Green's functions for a wide range of boundary-value problems. Green's Functions and Infinite Products provides a thorough introduction to the classical subjects of the construction of Green's functions for the two-dimensional Laplace equation and the infinite product representation of elementary functions. Every chapter begins with a review guide, outlining the basic concepts covered. A set of carefully designed challenging exercises is available at the end of each chapter to provide the reader with the opportunity to explore the concepts in more detail. Hints, comments, and answers to most of those exercises can be found at the end of the text. In addition, several illustrative examples are offered at the end of most sections. This text is intended for an elective graduate course or seminar within the scope of either pure or applied mathematics. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817682798 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-8280-4 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c281758 _d281758 |