000 04092nam a22003975i 4500
001 281945
003 MX-SnUAN
005 20160429154127.0
007 cr nn 008mamaa
008 150903s2012 xxu| o |||| 0|eng d
020 _a9780817683139
_99780817683139
024 7 _a10.1007/9780817683139
_2doi
035 _avtls000333736
039 9 _a201509030803
_bVLOAD
_c201404130524
_dVLOAD
_c201404092313
_dVLOAD
_y201402041118
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA370-380
100 1 _aCsató, Gyula.
_eautor
_9308144
245 1 4 _aThe Pullback Equation for Differential Forms /
_cby Gyula Csató, Bernard Dacorogna, Olivier Kneuss.
264 1 _aBoston :
_bBirkhäuser Boston,
_c2012.
300 _axI, 436 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Nonlinear Differential Equations and Their Applications ;
_v83
500 _aSpringer eBooks
505 0 _aIntroduction -- Part I Exterior and Differential Forms -- Exterior Forms and the Notion of Divisibility -- Differential Forms -- Dimension Reduction -- Part II Hodge-Morrey Decomposition and Poincaré Lemma -- An Identity Involving Exterior Derivatives and Gaffney Inequality -- The Hodge-Morrey Decomposition -- First-Order Elliptic Systems of Cauchy-Riemann Type -- Poincaré Lemma -- The Equation div u = f -- Part III The Case k = n -- The Case f × g > 0 -- The Case Without  Sign Hypothesis on f -- Part IV The Case 0 ? k ? n–1 -- General Considerations on the Flow Method -- The Cases k = 0 and k = 1 -- The Case k = 2 -- The Case 3 ? k ? n–1 -- Part V Hölder Spaces -- Hölder Continuous Functions -- Part VI Appendix -- Necessary Conditions -- An Abstract Fixed Point Theorem -- Degree Theory -- References -- Further Reading -- Notations -- Index. .
520 _aAn important question in geometry and analysis is to know when two k-forms f and g are equivalent through a change of variables. The problem is therefore to find a map ? so that it satisfies the pullback equation: ?*(g) = f.  In more physical terms, the question under consideration can be seen as a problem of mass transportation. The problem has received considerable attention in the cases k = 2 and k = n, but much less when 3 ? k ? n–1. The present monograph provides the first comprehensive study of the equation. The work begins by recounting various properties of exterior forms and differential forms that prove useful throughout the book. From there it goes on to present the classical Hodge–Morrey decomposition and to give several versions of the Poincaré lemma. The core of the book discusses the case k = n, and then the case 1? k ? n–1 with special attention on the case k = 2, which is fundamental in symplectic geometry. Special emphasis is given to optimal regularity, global results and boundary data. The last part of the work discusses Hölder spaces in detail; all the results presented here are essentially classical, but cannot be found in a single book. This section may serve as a reference on Hölder spaces and therefore will be useful to mathematicians well beyond those who are only interested in the pullback equation. The Pullback Equation for Differential Forms is a self-contained and concise monograph intended for both geometers and analysts. The book may serve as a valuable reference for researchers or a supplemental text for graduate courses or seminars.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aDacorogna, Bernard.
_eautor
_9300809
700 1 _aKneuss, Olivier.
_eautor
_9308145
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817683122
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-8313-9
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c281945
_d281945