000 | 04092nam a22003975i 4500 | ||
---|---|---|---|
001 | 281945 | ||
003 | MX-SnUAN | ||
005 | 20160429154127.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2012 xxu| o |||| 0|eng d | ||
020 |
_a9780817683139 _99780817683139 |
||
024 | 7 |
_a10.1007/9780817683139 _2doi |
|
035 | _avtls000333736 | ||
039 | 9 |
_a201509030803 _bVLOAD _c201404130524 _dVLOAD _c201404092313 _dVLOAD _y201402041118 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA370-380 | |
100 | 1 |
_aCsató, Gyula. _eautor _9308144 |
|
245 | 1 | 4 |
_aThe Pullback Equation for Differential Forms / _cby Gyula Csató, Bernard Dacorogna, Olivier Kneuss. |
264 | 1 |
_aBoston : _bBirkhäuser Boston, _c2012. |
|
300 |
_axI, 436 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aProgress in Nonlinear Differential Equations and Their Applications ; _v83 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aIntroduction -- Part I Exterior and Differential Forms -- Exterior Forms and the Notion of Divisibility -- Differential Forms -- Dimension Reduction -- Part II Hodge-Morrey Decomposition and Poincaré Lemma -- An Identity Involving Exterior Derivatives and Gaffney Inequality -- The Hodge-Morrey Decomposition -- First-Order Elliptic Systems of Cauchy-Riemann Type -- Poincaré Lemma -- The Equation div u = f -- Part III The Case k = n -- The Case f × g > 0 -- The Case Without Sign Hypothesis on f -- Part IV The Case 0 ? k ? n–1 -- General Considerations on the Flow Method -- The Cases k = 0 and k = 1 -- The Case k = 2 -- The Case 3 ? k ? n–1 -- Part V Hölder Spaces -- Hölder Continuous Functions -- Part VI Appendix -- Necessary Conditions -- An Abstract Fixed Point Theorem -- Degree Theory -- References -- Further Reading -- Notations -- Index. . | |
520 | _aAn important question in geometry and analysis is to know when two k-forms f and g are equivalent through a change of variables. The problem is therefore to find a map ? so that it satisfies the pullback equation: ?*(g) = f. In more physical terms, the question under consideration can be seen as a problem of mass transportation. The problem has received considerable attention in the cases k = 2 and k = n, but much less when 3 ? k ? n–1. The present monograph provides the first comprehensive study of the equation. The work begins by recounting various properties of exterior forms and differential forms that prove useful throughout the book. From there it goes on to present the classical Hodge–Morrey decomposition and to give several versions of the Poincaré lemma. The core of the book discusses the case k = n, and then the case 1? k ? n–1 with special attention on the case k = 2, which is fundamental in symplectic geometry. Special emphasis is given to optimal regularity, global results and boundary data. The last part of the work discusses Hölder spaces in detail; all the results presented here are essentially classical, but cannot be found in a single book. This section may serve as a reference on Hölder spaces and therefore will be useful to mathematicians well beyond those who are only interested in the pullback equation. The Pullback Equation for Differential Forms is a self-contained and concise monograph intended for both geometers and analysts. The book may serve as a valuable reference for researchers or a supplemental text for graduate courses or seminars. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aDacorogna, Bernard. _eautor _9300809 |
|
700 | 1 |
_aKneuss, Olivier. _eautor _9308145 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817683122 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-8313-9 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c281945 _d281945 |