000 03596nam a22003735i 4500
001 282183
003 MX-SnUAN
005 20170705134206.0
007 cr nn 008mamaa
008 150903s2006 ne | o |||| 0|eng d
020 _a9781402055713
_99781402055713
024 7 _a10.1007/9781402055713
_2doi
035 _avtls000335242
039 9 _a201509030236
_bVLOAD
_c201404300258
_dVLOAD
_y201402041255
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQ334-342
100 1 _aGiunchiglia, Enrico.
_eeditor.
_9308621
245 1 0 _aSAT 2005 :
_bSatisfiability Research in the Year 2005 /
_cedited by Enrico Giunchiglia, Toby Walsh.
264 1 _aDordrecht :
_bSpringer Netherlands,
_c2006.
300 _av, 293 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aSatisfiability in the Year 2005 -- Heuristic-Based Backtracking Relaxation for Propositional Satisfiability -- Symbolic Techniques in Satisfiability Solving -- Exponential Lower Bounds for the Running Time of DPLL Algorithms on Satisfiable Formulas -- Backdoor Sets for DLL Subsolvers -- The Complexity of Pure Literal Elimination -- Clause Weighting Local Search for SAT -- Solving Non-Boolean Satisfiability Problems with Stochastic Local Search: A Comparison of Encodings -- Regular Random k-SAT: Properties of Balanced Formulas -- Applying SAT Solving in Classification of Finite Algebras -- The SAT-based Approach to Separation Logic -- MathSAT: Tight Integration of SAT and Mathematical Decision Procedures.
520 _aThis book is devoted to recent progress made in solving propositional satisfiability and related problems. Propositional satisfiability is a powerful and general formalism used to solve a wide range of important problems including hardware and software verification. The core of many reasoning problems in automated deduction are propositional. Research into methods to automate such reasoning has therefore a long history in artificial intelligence. In 1957, Allen Newell and Herb Simon introduced the Logic Theory Machine to prove propositional theorems from Whitehead and Russel's "Principia mathematica". In 1960, Martin Davis and Hillary Putnam introduced their eponymous decision procedure for satisfiability reasoning (though, for space reasons, it was quickly superseded by the modified procedure proposed by Martin Davis, George Logemann and Donald Loveland two years later). In 1971, Stephen Cook's proof that propositional satisfiability is NP-Complete placed satisfiability as the cornerstone of complexity theory. As this volume demonstrates, research has continued very actively in this area since then. This book follows on from the highly successful volume entitled SAT 2000 published five years ago. The papers in SAT 2005 fall (not entirely neatly) into the following categories: complete methods, local and stochastic search methods, random problems, applications, and extensions beyond the propositional.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aWalsh, Toby.
_eeditor.
_9308622
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781402045523
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4020-5571-3
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c282183
_d282183