000 | 02822nam a22003735i 4500 | ||
---|---|---|---|
001 | 282255 | ||
003 | MX-SnUAN | ||
005 | 20160429154141.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2006 ne | o |||| 0|eng d | ||
020 |
_a9781402050107 _99781402050107 |
||
024 | 7 |
_a10.1007/9781402050107 _2doi |
|
035 | _avtls000334999 | ||
039 | 9 |
_a201509030251 _bVLOAD _c201404300256 _dVLOAD _y201402041248 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA252-252.5 | |
100 | 1 |
_aRay, Urmie. _eautor _9308753 |
|
245 | 1 | 0 |
_aAutomorphic Forms and Lie Superalgebras / _cby Urmie Ray. |
264 | 1 |
_aDordrecht : _bSpringer Netherlands, _c2006. |
|
300 |
_aIx, 285 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aAlgebra and Applications ; _v5 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aBorcherds-Kac-Moody Lie Superalgebras -- Singular Theta Transforms of Vector Valued Modular Forms -- ?-Graded Vertex Algebras -- Lorentzian BKM Algebras. | |
520 | _aA principal ingredient in the proof of the Moonshine Theorem, connecting the Monster group to modular forms, is the infinite dimensional Lie algebra of physical states of a chiral string on an orbifold of a 26 dimensional torus, called the Monster Lie algebra. It is a Borcherds-Kac-Moody Lie algebra with Lorentzian root lattice; and has an associated automorphic form having a product expansion describing its structure. Lie superalgebras are generalizations of Lie algebras, useful for depicting supersymmetry – the symmetry relating fermions and bosons. Most known examples of Lie superalgebras with a related automorphic form such as the Fake Monster Lie algebra whose reflection group is given by the Leech lattice arise from (super)string theory and can be derived from lattice vertex algebras. The No-Ghost Theorem from dual resonance theory and a conjecture of Berger-Li-Sarnak on the eigenvalues of the hyperbolic Laplacian provide strong evidence that they are of rank at most 26. The aim of this book is to give the reader the tools to understand the ongoing classification and construction project of this class of Lie superalgebras and is ideal for a graduate course. The necessary background is given within chapters or in appendices. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781402050091 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4020-5010-7 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c282255 _d282255 |