000 | 03131nam a22003855i 4500 | ||
---|---|---|---|
001 | 282378 | ||
003 | MX-SnUAN | ||
005 | 20160429154147.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2007 ne | o |||| 0|eng d | ||
020 |
_a9781402058103 _99781402058103 |
||
024 | 7 |
_a10.1007/1402058101 _2doi |
|
035 | _avtls000335353 | ||
039 | 9 |
_a201509030202 _bVLOAD _c201404120936 _dVLOAD _c201404090715 _dVLOAD _y201402041258 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA251.5 | |
100 | 1 |
_aJespers, Eric. _eautor _9309011 |
|
245 | 1 | 0 |
_aNoetherian Semigroup Algebras / _cby Eric Jespers, Jan Okni?ski. |
264 | 1 |
_aDordrecht : _bSpringer Netherlands, _c2007. |
|
300 |
_av, 362 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aAlgebra and Applications ; _v7 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aPrerequisites on semigroup theory -- Prerequisites on ring theory -- Algebras of submonoids of polycyclic-by-finite groups -- General Noetherian semigroup algebras -- Principal ideal rings -- Maximal orders and Noetherian semigroup algebras -- Monoids of I-type -- Monoids of skew type -- Examples. | |
520 | _aWithin the last decade, semigroup theoretical methods have occurred naturally in many aspects of ring theory, algebraic combinatorics, representation theory and their applications. In particular, motivated by noncommutative geometry and the theory of quantum groups, there is a growing interest in the class of semigroup algebras and their deformations. This work presents a comprehensive treatment of the main results and methods of the theory of Noetherian semigroup algebras. These general results are then applied and illustrated in the context of important classes of algebras that arise in a variety of areas and have been recently intensively studied. Several concrete constructions are described in full detail, in particular intriguing classes of quadratic algebras and algebras related to group rings of polycyclic-by-finite groups. These give new classes of Noetherian algebras of small Gelfand-Kirillov dimension. The focus is on the interplay between their combinatorics and the algebraic structure. This yields a rich resource of examples that are of interest not only for the noncommutative ring theorists, but also for researchers in semigroup theory and certain aspects of group and group ring theory. Mathematical physicists will find this work of interest owing to the attention given to applications to the Yang-Baxter equation. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aOkni?ski, Jan. _eautor _9309012 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781402058097 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/1-4020-5810-1 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c282378 _d282378 |