000 03131nam a22003855i 4500
001 282378
003 MX-SnUAN
005 20160429154147.0
007 cr nn 008mamaa
008 150903s2007 ne | o |||| 0|eng d
020 _a9781402058103
_99781402058103
024 7 _a10.1007/1402058101
_2doi
035 _avtls000335353
039 9 _a201509030202
_bVLOAD
_c201404120936
_dVLOAD
_c201404090715
_dVLOAD
_y201402041258
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA251.5
100 1 _aJespers, Eric.
_eautor
_9309011
245 1 0 _aNoetherian Semigroup Algebras /
_cby Eric Jespers, Jan Okni?ski.
264 1 _aDordrecht :
_bSpringer Netherlands,
_c2007.
300 _av, 362 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aAlgebra and Applications ;
_v7
500 _aSpringer eBooks
505 0 _aPrerequisites on semigroup theory -- Prerequisites on ring theory -- Algebras of submonoids of polycyclic-by-finite groups -- General Noetherian semigroup algebras -- Principal ideal rings -- Maximal orders and Noetherian semigroup algebras -- Monoids of I-type -- Monoids of skew type -- Examples.
520 _aWithin the last decade, semigroup theoretical methods have occurred naturally in many aspects of ring theory, algebraic combinatorics, representation theory and their applications. In particular, motivated by noncommutative geometry and the theory of quantum groups, there is a growing interest in the class of semigroup algebras and their deformations. This work presents a comprehensive treatment of the main results and methods of the theory of Noetherian semigroup algebras. These general results are then applied and illustrated in the context of important classes of algebras that arise in a variety of areas and have been recently intensively studied. Several concrete constructions are described in full detail, in particular intriguing classes of quadratic algebras and algebras related to group rings of polycyclic-by-finite groups. These give new classes of Noetherian algebras of small Gelfand-Kirillov dimension. The focus is on the interplay between their combinatorics and the algebraic structure. This yields a rich resource of examples that are of interest not only for the noncommutative ring theorists, but also for researchers in semigroup theory and certain aspects of group and group ring theory. Mathematical physicists will find this work of interest owing to the attention given to applications to the Yang-Baxter equation.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aOkni?ski, Jan.
_eautor
_9309012
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781402058097
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/1-4020-5810-1
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c282378
_d282378