000 03597nam a22003735i 4500
001 282664
003 MX-SnUAN
005 20160429154200.0
007 cr nn 008mamaa
008 150903s2007 ne | o |||| 0|eng d
020 _a9781402051692
_99781402051692
024 7 _a10.1007/1402051697
_2doi
035 _avtls000335068
039 9 _a201509030250
_bVLOAD
_c201404120918
_dVLOAD
_c201404090656
_dVLOAD
_y201402041250
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQC19.2-20.85
100 1 _aCordes, Heinz Otto.
_eautor
_9309578
245 1 0 _aPrecisely Predictable Dirac Observables /
_cby Heinz Otto Cordes.
264 1 _aDordrecht :
_bSpringer Netherlands,
_c2007.
300 _axIx, 268 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aFundamental Theories of Physics ;
_v154
500 _aSpringer eBooks
505 0 _aDirac Observables and ?do-s -- Why Should Observables be Pseudodifferential? -- Decoupling with ?do-s -- Smooth Pseudodifferential Heisenberg Representation -- The Algebra of Precisely Predictable Observables -- Lorentz Covariance of Precise Predictability -- Spectral Theory of Precisely Predictable Approximations -- Dirac and Schrödinger Equations; a Comparison.
520 _aThis work presents a "Clean Quantum Theory of the Electron", based on Dirac’s equation. "Clean" in the sense of a complete mathematical explanation of the well known paradoxes of Dirac’s theory, and a connection to classical theory, including the motion of a magnetic moment (spin) in the given field, all for a charged particle (of spin ½) moving in a given electromagnetic field. This theory is relativistically covariant, and it may be regarded as a mathematically consistent quantum-mechanical generalization of the classical motion of such a particle, à la Newton and Einstein. Normally, our fields are time-independent, but also discussed is the time-dependent case, where slightly different features prevail. A "Schroedinger particle", such as a light quantum, experiences a very different (time-dependent) "Precise Predictablity of Observables". An attempt is made to compare both cases. There is not the Heisenberg uncertainty of location and momentum; rather, location alone possesses a built-in uncertainty of measurement. Mathematically, our tools consist of the study of a pseudo-differential operator (i.e. an "observable") under conjugation with the Dirac propagator: such an operator has a "symbol" approximately propagating along classical orbits, while taking its "spin" along. This is correct only if the operator is "precisely predictable", that is, it must approximately commute with the Dirac Hamiltonian, and, in a sense, will preserve the subspaces of electronic and positronic states of the underlying Hilbert space. Audience: Theoretical Physicists, specifically in Quantum Mechanics. Mathematicians, in the fields of Analysis, Spectral Theory of Self-adjoint differential operators, and Elementary Theory of Pseudo-Differential Operators
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781402051685
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/1-4020-5169-7
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c282664
_d282664