000 02963nam a22003735i 4500
001 282879
003 MX-SnUAN
005 20160429154210.0
007 cr nn 008mamaa
008 150903s2008 ne | o |||| 0|eng d
020 _a9781402086991
_99781402086991
024 7 _a10.1007/9781402086991
_2doi
035 _avtls000336111
039 9 _a201509030818
_bVLOAD
_c201404300311
_dVLOAD
_y201402041341
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aB67
100 1 _aPeterson, Martin.
_eautor
_9309972
245 1 0 _aNonbayesian Decision Theory :
_bBeliefs and Desires as Reasons for Action /
_cby Martin Peterson.
264 1 _aDordrecht :
_bSpringer Netherlands,
_c2008.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aTheory and Decision Library ;
_v44
500 _aSpringer eBooks
505 0 _aBayesian decision theory -- Choosing what to decide -- Indeterminate preferences -- Utility -- Subjective probability -- Expected utility -- Risk aversion.
520 _aThis book aims to present an account of rational choice from a non-Bayesian point of view. Rational agents maximize subjective expected utility, but contrary to what is claimed by Bayesians, the author argues that utility and subjective probability should not be defined in terms of preferences over uncertain prospects. To some extent, the author’s non-Bayesian view gives a modern account of what decision theory could have been like, had decision theorists not entered the Bayesian path discovered by Ramsey, Savage, and Jeffrey. The author argues that traditional Bayesian decision theory is unavailing from an action-guiding perspective. For the deliberating Bayesian agent, the output of decision theory is not a set of preferences over alternative acts - these preferences are on the contrary used as input to the theory. Instead, the output is a (set of) utility function(s) that can be used for describing the agent as an expected utility maximizer, which are of limited normative relevance.On the non-Bayesian view articulated by the author, utility and probability are defined in terms of preferences over certain outcomes. These utility and probability functions are then used for generating preferences over uncertain prospects, which conform to the principle of maximizing expected utility. It is argued that this approach offers more action guidance.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781402086984
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4020-8699-1
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c282879
_d282879