000 | 02847nam a22003735i 4500 | ||
---|---|---|---|
001 | 283069 | ||
003 | MX-SnUAN | ||
005 | 20160429154218.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2008 ne | o |||| 0|eng d | ||
020 |
_a9781402087240 _99781402087240 |
||
024 | 7 |
_a10.1007/9781402087240 _2doi |
|
035 | _avtls000336123 | ||
039 | 9 |
_a201509030818 _bVLOAD _c201404300311 _dVLOAD _y201402041341 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA299.6-433 | |
100 | 1 |
_aFe?kan, Michal. _eautor _9310316 |
|
245 | 1 | 0 |
_aTopological Degree Approach to Bifurcation Problems / _cby Michal Fe?kan. |
264 | 1 |
_aDordrecht : _bSpringer Netherlands, _c2008. |
|
300 | _brecurso en línea. | ||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aTopological Fixed Point Theory and Its Applications ; _v5 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aTheoretical Background -- Bifurcation of Periodic Solutions -- Bifurcation of Chaotic Solutions -- Topological Transversality -- Traveling Waves on Lattices -- Periodic Oscillations of Wave Equations -- Topological Degree for Wave Equations. | |
520 | _aTopological bifurcation theory is one of the most essential topics in mathematics. This book contains original bifurcation results for the existence of oscillations and chaotic behaviour of differential equations and discrete dynamical systems under variation of involved parameters. Using topological degree theory and a perturbation approach in dynamical systems, a broad variety of nonlinear problems are studied, including: non-smooth mechanical systems with dry frictions; weakly coupled oscillators; systems with relay hysteresis; differential equations on infinite lattices of Frenkel-Kontorova and discretized Klein-Gordon types; blue sky catastrophes for reversible dynamical systems; buckling of beams; and discontinuous wave equations. Precise and complete proofs, together with concrete applications with many stimulating and illustrating examples, make this book valuable to both the applied sciences and mathematical fields, ensuring the book should not only be of interest to mathematicians but to physicists and theoretically inclined engineers interested in bifurcation theory and its applications to dynamical systems and nonlinear analysis. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781402087233 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4020-8724-0 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c283069 _d283069 |