000 03169nam a22003735i 4500
001 283117
003 MX-SnUAN
005 20160429154220.0
007 cr nn 008mamaa
008 150903s2008 ne | o |||| 0|eng d
020 _a9781402087264
_99781402087264
024 7 _a10.1007/9781402087264
_2doi
035 _avtls000336124
039 9 _a201509030257
_bVLOAD
_c201404300311
_dVLOAD
_y201402041341
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aTK7888.4
100 1 _aPerelman, Yevgeny.
_eautor
_9310393
245 1 4 _aThe NeuroProcessor :
_bAn Integrated Interface to Biological Neural Networks /
_cby Yevgeny Perelman, Ran Ginosar.
264 1 _aDordrecht :
_bSpringer Netherlands,
_c2008.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aRecording From Biological Neural Networks -- The Neuroprocessor -- Integrated Front-End for Neuronal Recording -- NPR03: Mixed-Signal Integrated Front-End for Neuronal Recording -- Algorithms for Neuroprocessor Spike Sorting -- MEA on Chip: In-Vitro Neuronal Interfaces -- Conclusions.
520 _aNeuronal electronic interfaces carry significant potential for scientific research and medical applications. Neuroprosthetics may help to restore damaged sensory and motor brain functionality. Neuronal interfaces are evolving into complex micro-fabricated arrays of hundreds or thousands of sensors, and require tighter integration, advanced embedded computation, and wireless communication. At the very least, the electronic circuit of the implanted neuronal interface must acquire the data and transmit it outside. However, the huge data rates produced by large-scale neuronal interfaces exceed the communication bandwidth provided by low-power wireless channels. Hence, extensive embedded computations must be integrated into the interface in order to reduce the amount of transmitted data. This book presents the Neuroprocessor, a novel computational neuronal interface device implemented in VLSI technology. In addition to neuronal signals acquisition, it can process the data, generate stimuli and transmit the data over wireless channels, while using minimum electric energy. The NeuroProcessor opens with a brief background on neuronal communication and microelectrode recording. It introduces three generations of the Neuroprocessor and presents their architecture, circuits and algorithms. Applications to a miniature head-stage for in-vivo experiments and multi-electrode arrays for in-vitro studies are described.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aGinosar, Ran.
_eautor
_9310394
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781402087257
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4020-8726-4
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c283117
_d283117