000 | 03328nam a22003855i 4500 | ||
---|---|---|---|
001 | 283236 | ||
003 | MX-SnUAN | ||
005 | 20160429154226.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2007 ne | o |||| 0|eng d | ||
020 |
_a9781402061400 _99781402061400 |
||
024 | 7 |
_a10.1007/1402061404 _2doi |
|
035 | _avtls000335494 | ||
039 | 9 |
_a201509030204 _bVLOAD _c201404120937 _dVLOAD _c201404090716 _dVLOAD _y201402041302 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQC5.53 | |
100 | 1 |
_aDoktorov, Evgeny V. _eautor _9310604 |
|
245 | 1 | 2 |
_aA Dressing Method in Mathematical Physics / _cby Evgeny V. Doktorov, Sergey B. Leble. |
264 | 1 |
_aDordrecht : _bSpringer Netherlands, _c2007. |
|
300 |
_axxiv, 383 p _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aMathematical Physics Studies ; _v28 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aMathematical preliminaries -- Factorization and classical Darboux transformations -- From elementary to twofold elementary Darboux transformation -- Dressing chain equations -- Dressing in 2+1 dimensions -- Applications of dressing to linear problems -- Important links -- Dressing via local Riemann–Hilbert problem -- Dressing via nonlocal Riemann–Hilbert problem -- Generating solutions via ? problem. | |
520 | _aThe monograph is devoted to the systematic presentation of the so called "dressing method" for solving differential equations (both linear and nonlinear) of mathematical physics. The essence of the dressing method consists in a generation of new non-trivial solutions of a given equation from (maybe trivial) solution of the same or related equation. The Moutard and Darboux transformations discovered in XIX century as applied to linear equations, the Bäcklund transformation in differential geometry of surfaces, the factorization method, the Riemann-Hilbert problem in the form proposed by Shabat and Zakharov for soliton equations and its extension in terms of the d-bar formalism comprise the main objects of the book. Throughout the text, a generally sufficient "linear experience" of readers is exploited, with a special attention to the algebraic aspects of the main mathematical constructions and to practical rules of obtaining new solutions. Various linear equations of classical and quantum mechanics are solved by the Darboux and factorization methods. An extension of the classical Darboux transformations to nonlinear equations in 1+1 and 2+1 dimensions, as well as its factorization are discussed in detail. The applicability of the local and non-local Riemann-Hilbert problem-based approach and its generalization in terms of the d-bar method are illustrated on various nonlinear equations. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aLeble, Sergey B. _eautor _9310605 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781402061387 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/1-4020-6140-4 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c283236 _d283236 |