000 03149nam a22003615i 4500
001 283434
003 MX-SnUAN
005 20170705134208.0
007 cr nn 008mamaa
008 150903s2007 ne | o |||| 0|eng d
020 _a9781402062728
_99781402062728
024 7 _a10.1007/9781402062728
_2doi
035 _avtls000335551
039 9 _a201509030238
_bVLOAD
_c201404300303
_dVLOAD
_y201402041303
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aTK5102.9
100 1 _aShmaliy, Yuriy.
_eeditor.
_9309481
245 1 0 _aContinuous-Time Systems /
_cedited by Yuriy Shmaliy.
264 1 _aDordrecht :
_bSpringer Netherlands,
_c2007.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aQuantitative Methods of Systems Description -- Qualitative Methods of Systems Description -- LTI Systems in the Time Domain -- LTI Systems in the Frequency Domain (Transform Analysis) -- Linear Time-Varying Systems -- Nonlinear Time Invariant Systems -- Nonlinear Time Varying Systems.
520 _aContinuous-Time Systems is a description of linear, nonlinear, time-invariant, and time-varying electronic continuous-time systems. As an assemblage of physical or mathematical components organized and interacting to convert an input signal (also called excitation signal or driving force) to an output signal (also called response signal), an electronic system can be described using different methods offered by the modern systems theory. To make possible for readers to understand systems, the book systematically covers major foundations of the systems theory. First, the quantitative and qualitative methods of systems description are presented along with the stability analysis. The representation of linear time-invariant systems in the time domain is provided using the convolution, ordinarily differential equations (ODEs), and state space. In the frequency domain, these systems are analyzed using the Fourier and Laplace transforms. The linear time-varying systems are represented using the general convolution, ODEs, and state space. The nonlinear time-invariant systems are described employing the Taylor and Volterra series expansions, ODEs, state space, and approximate methods such as averaging, equivalent linearization, and describing function. Finally, the representation of nonlinear time-varying systems is given using the Taylor and Volterra series, ODEs, modulation functions method, and state space modelling. Review of matrix theory and other useful generalizations are postponed to Appendices.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781402062711
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4020-6272-8
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c283434
_d283434