000 | 03149nam a22003615i 4500 | ||
---|---|---|---|
001 | 283434 | ||
003 | MX-SnUAN | ||
005 | 20170705134208.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2007 ne | o |||| 0|eng d | ||
020 |
_a9781402062728 _99781402062728 |
||
024 | 7 |
_a10.1007/9781402062728 _2doi |
|
035 | _avtls000335551 | ||
039 | 9 |
_a201509030238 _bVLOAD _c201404300303 _dVLOAD _y201402041303 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aTK5102.9 | |
100 | 1 |
_aShmaliy, Yuriy. _eeditor. _9309481 |
|
245 | 1 | 0 |
_aContinuous-Time Systems / _cedited by Yuriy Shmaliy. |
264 | 1 |
_aDordrecht : _bSpringer Netherlands, _c2007. |
|
300 | _brecurso en línea. | ||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
500 | _aSpringer eBooks | ||
505 | 0 | _aQuantitative Methods of Systems Description -- Qualitative Methods of Systems Description -- LTI Systems in the Time Domain -- LTI Systems in the Frequency Domain (Transform Analysis) -- Linear Time-Varying Systems -- Nonlinear Time Invariant Systems -- Nonlinear Time Varying Systems. | |
520 | _aContinuous-Time Systems is a description of linear, nonlinear, time-invariant, and time-varying electronic continuous-time systems. As an assemblage of physical or mathematical components organized and interacting to convert an input signal (also called excitation signal or driving force) to an output signal (also called response signal), an electronic system can be described using different methods offered by the modern systems theory. To make possible for readers to understand systems, the book systematically covers major foundations of the systems theory. First, the quantitative and qualitative methods of systems description are presented along with the stability analysis. The representation of linear time-invariant systems in the time domain is provided using the convolution, ordinarily differential equations (ODEs), and state space. In the frequency domain, these systems are analyzed using the Fourier and Laplace transforms. The linear time-varying systems are represented using the general convolution, ODEs, and state space. The nonlinear time-invariant systems are described employing the Taylor and Volterra series expansions, ODEs, state space, and approximate methods such as averaging, equivalent linearization, and describing function. Finally, the representation of nonlinear time-varying systems is given using the Taylor and Volterra series, ODEs, modulation functions method, and state space modelling. Review of matrix theory and other useful generalizations are postponed to Appendices. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781402062711 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4020-6272-8 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c283434 _d283434 |