000 | 02944nam a22003735i 4500 | ||
---|---|---|---|
001 | 285369 | ||
003 | MX-SnUAN | ||
005 | 20160429154402.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2012 xxu| o |||| 0|eng d | ||
020 |
_a9781441978059 _99781441978059 |
||
024 | 7 |
_a10.1007/9781441978059 _2doi |
|
035 | _avtls000339067 | ||
039 | 9 |
_a201509030836 _bVLOAD _c201404300354 _dVLOAD _y201402060926 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA370-380 | |
100 | 1 |
_aBeilina, Larisa. _eautor _9313535 |
|
245 | 1 | 0 |
_aApproximate Global Convergence and Adaptivity for Coefficient Inverse Problems / _cby Larisa Beilina, Michael Victor Klibanov. |
264 | 1 |
_aBoston, MA : _bSpringer US, _c2012. |
|
300 |
_axv, 407 páginas 78 ilustraciones, 73 ilustraciones en color. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
500 | _aSpringer eBooks | ||
505 | 0 | _aTwo Central Questions of This Book and an Introduction to the Theories of Ill-Posed and Coefficient Inverse Problems -- Approximately Globally Convergent Numerical Method -- Numerical Implementation of the Approximately Globally Convergent Method -- The Adaptive Finite Element Technique and its Synthesis with the Approximately Globally Convergent Numerical Method -- Blind Experimental Data -- Backscattering Data. | |
520 | _aApproximate Global Convergence and Adaptivity for Coefficient Inverse Problems is the first book in which two new concepts of numerical solutions of multidimensional Coefficient Inverse Problems (CIPs) for a hyperbolic Partial Differential Equation (PDE) are presented: Approximate Global Convergence and the Adaptive Finite Element Method (adaptivity for brevity). Two central questions for CIPs are addressed: How to obtain a good approximation for the exact solution without any knowledge of a small neighborhood of this solution, and how to refine it given the approximation. The book also combines analytical convergence results with recipes for various numerical implementations of developed algorithms. The developed technique is applied to two types of blind experimental data, which are collected both in a laboratory and in the field. The result for the blind backscattering experimental data collected in the field addresses a real-world problem of imaging of shallow explosives. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aKlibanov, Michael Victor. _eautor _9313536 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781441978042 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4419-7805-9 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c285369 _d285369 |