000 03531nam a22003735i 4500
001 285473
003 MX-SnUAN
005 20170705134211.0
007 cr nn 008mamaa
008 150903s2011 xxu| o |||| 0|eng d
020 _a9781441974006
_99781441974006
024 7 _a10.1007/9781441974006
_2doi
035 _avtls000338944
039 9 _a201509030311
_bVLOAD
_c201404300352
_dVLOAD
_y201402060923
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA613-613.8
100 1 _aTu, Loring W.
_eautor
_9305037
245 1 3 _aAn Introduction to Manifolds /
_cby Loring W. Tu.
264 1 _aNew York, NY :
_bSpringer New York,
_c2011.
300 _axviii, 410 páginas 124 ilustraciones, 1 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aUniversitext,
_x0172-5939
500 _aSpringer eBooks
505 0 _aPreface to the Second Edition -- Preface to the First Edition -- Chapter 1. Euclidean Spaces -- Chapter 2. Manifolds -- Chapter 3. The Tangent Space -- Chapter 4. Lie Groups and Lie Algebras.-Chapter 5. Differential Forms -- Chapter 6. Integration.-Chapter 7. De Rham Theory -- Appendices -- A. Point-Set Topology -- B. The Inverse Function Theorem on R(N) and Related Results -- C. Existence of a Partition of Unity in General -- D. Linear Algebra -- E. Quaternions and the Symplectic Group -- Solutions to Selected Exercises -- Hints and Solutions to Selected End-of-Section Problems -- List of Symbols -- References -- Index.
520 _aManifolds, the higher-dimensional analogues of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way the reader acquires the knowledge and skills necessary for further study of geometry and topology. The second edition contains fifty pages of new material. Many passages have been rewritten, proofs simplified, and new examples and exercises added. This work may be used as a textbook for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. The requisite point-set topology is included in an appendix of twenty-five pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. Requiring only minimal undergraduate prerequisites, "An Introduction to Manifolds" is also an excellent foundation for the author's publication with Raoul Bott, "Differential Forms in Algebraic Topology."
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781441973993
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4419-7400-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c285473
_d285473