000 03907nam a22003975i 4500
001 285543
003 MX-SnUAN
005 20160429154413.0
007 cr nn 008mamaa
008 150903s2011 xxu| o |||| 0|eng d
020 _a9781441979766
_99781441979766
024 7 _a10.1007/9781441979766
_2doi
035 _avtls000339118
039 9 _a201509030836
_bVLOAD
_c201404300355
_dVLOAD
_y201402060927
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA276-280
100 1 _aBorcard, Daniel.
_eautor
_9313790
245 1 0 _aNumerical Ecology with R /
_cby Daniel Borcard, Francois Gillet, Pierre Legendre.
264 1 _aNew York, NY :
_bSpringer New York,
_c2011.
300 _axii, 306 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aUse R
500 _aSpringer eBooks
505 0 _aIntroduction -- Exploratory data analysis -- Association measures and matrices -- Cluster analysis -- Unconstrained ordination -- Canonical ordination -- Spatial analysis of ecological data.
520 _aNumerical Ecology with R provides a long-awaited bridge between a textbook in Numerical Ecology and the implementation of this discipline in the R language. After short theoretical overviews, the authors accompany the users through the exploration of the methods by means of applied and extensively commented examples. Users are invited to use this book as a teaching companion at the computer. The travel starts with exploratory approaches, proceeds with the construction of association matrices, then addresses three families of methods: clustering, unconstrained and canonical ordination, and spatial analysis. All the necessary data files, the scripts used in the chapters, as well as the extra R functions and packages written by the authors, can be downloaded from a web page accessible through the Springer web site(http://adn.biol.umontreal.ca/~numericalecology/numecolR/). This book is aimed at professional researchers, practitioners, graduate students and teachers in ecology, environmental science and engineering, and in related fields such as oceanography, molecular ecology, agriculture and soil science, who already have a background in general and multivariate statistics and wish to apply this knowledge to their data using the R language, as well as people willing to accompany their disciplinary learning with practical applications. People from other fields (e.g. geology, geography, paleoecology, phylogenetics, anthropology, the social and education sciences, etc.) may also benefit from the materials presented in this book. The three authors teach numerical ecology, both theoretical and practical, to a wide array of audiences, in regular courses in their Universities and in short courses given around the world. Daniel Borcard is lecturer of Biostatistics and Ecology and researcher in Numerical Ecology at Université de Montréal, Québec, Canada. François Gillet is professor of Community Ecology and Ecological Modelling at Université de Franche-Comté, Besançon, France. Pierre Legendre is professor of Quantitative Biology and Ecology at Université de Montréal, Fellow of the Royal Society of Canada, and ISI Highly Cited Researcher in Ecology/Environment.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aGillet, Francois.
_eautor
_9313791
700 1 _aLegendre, Pierre.
_eautor
_9139626
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781441979759
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4419-7976-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c285543
_d285543