000 | 02963nam a22003735i 4500 | ||
---|---|---|---|
001 | 285561 | ||
003 | MX-SnUAN | ||
005 | 20160429154413.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2013 xxu| o |||| 0|eng d | ||
020 |
_a9781441909251 _99781441909251 |
||
024 | 7 |
_a10.1007/9781441909251 _2doi |
|
035 | _avtls000338141 | ||
039 | 9 |
_a201509030322 _bVLOAD _c201404300340 _dVLOAD _y201402060903 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA276-280 | |
100 | 1 |
_aWakefield, Jon. _eautor _9313813 |
|
245 | 1 | 0 |
_aBayesian and Frequentist Regression Methods / _cby Jon Wakefield. |
264 | 1 |
_aNew York, NY : _bSpringer New York : _bImprint: Springer, _c2013. |
|
300 |
_axIx, 697 páginas 140 ilustraciones, 6 ilustraciones en color. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aSpringer Series in Statistics, _x0172-7397 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aIntroduction -- Frequentist Inference -- Bayesian Inference -- Linear Models -- Binary Data Models -- General Regression Models. | |
520 | _aBayesian and Frequentist Regression Methods provides a modern account of both Bayesian and frequentist methods of regression analysis. Many texts cover one or the other of the approaches, but this is the most comprehensive combination of Bayesian and frequentist methods that exists in one place. The two philosophical approaches to regression methodology are featured here as complementary techniques, with theory and data analysis providing supplementary components of the discussion. In particular, methods are illustrated using a variety of data sets. The majority of the data sets are drawn from biostatistics but the techniques are generalizable to a wide range of other disciplines. While the philosophy behind each approach is discussed, the book is not ideological in nature and an emphasis is placed on practical application. It is shown that, in many situations, careful application of the respective approaches can lead to broadly similar conclusions. To use this text, the reader requires a basic understanding of calculus and linear algebra, and introductory courses in probability and statistical theory. The book is based on the author's experience teaching a graduate sequence in regression methods. The book website contains all of the code to reproduce all of the analyses and figures contained in the book. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781441909244 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4419-0925-1 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c285561 _d285561 |