000 03392nam a22003975i 4500
001 286047
003 MX-SnUAN
005 20170705134212.0
007 cr nn 008mamaa
008 150903s2010 xxu| o |||| 0|eng d
020 _a9781441906304
_99781441906304
024 7 _a10.1007/9781441906304
_2doi
035 _avtls000338056
039 9 _a201509030810
_bVLOAD
_c201404300339
_dVLOAD
_y201402060901
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQ295
100 1 _aDragan, Vasile.
_eautor
_9300693
245 1 0 _aMathematical Methods in Robust Control of Discrete-Time Linear Stochastic Systems /
_cby Vasile Dragan, Toader Morozan, Adrian-Mihail Stoica.
250 _aFirst.
264 1 _aNew York, NY :
_bSpringer New York,
_c2010.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aElements of probability theory -- Discrete-time linear equations defined by positive operators -- Mean square exponential stability -- Structural properties of linear stochastic systems -- Discrete-time Riccati equations of stochastic control -- Linear quadratic optimization problems -- Discrete-time stochastic optimal control -- Robust stability and robust stabilization of discrete-time linear stochastic systems.
520 _aIn this monograph the authors develop a theory for the robust control of discrete-time stochastic systems, subjected to both independent random perturbations and to Markov chains. Such systems are widely used to provide mathematical models for real processes in fields such as aerospace engineering, communications, manufacturing, finance and economy. The theory is a continuation of the authors’ work presented in their previous book entitled "Mathematical Methods in Robust Control of Linear Stochastic Systems" published by Springer in 2006. Key features: - Provides a common unifying framework for discrete-time stochastic systems corrupted with both independent random perturbations and with Markovian jumps which are usually treated separately in the control literature - Covers preliminary material on probability theory, independent random variables, conditional expectation and Markov chains - Proposes new numerical algorithms to solve coupled matrix algebraic Riccati equations - Leads the reader in a natural way to the original results through a systematic presentation - Presents new theoretical results with detailed numerical examples The monograph is geared to researchers and graduate students in advanced control engineering, applied mathematics, mathematical systems theory and finance. It is also accessible to undergraduate students with a fundamental knowledge in the theory of stochastic systems.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aMorozan, Toader.
_eautor
_9300694
700 1 _aStoica, Adrian-Mihail.
_eautor
_9300695
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781441906298
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4419-0630-4
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c286047
_d286047