000 | 03816nam a22003855i 4500 | ||
---|---|---|---|
001 | 286560 | ||
003 | MX-SnUAN | ||
005 | 20160429154506.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2013 xxk| o |||| 0|eng d | ||
020 |
_a9781447148845 _99781447148845 |
||
024 | 7 |
_a10.1007/9781447148845 _2doi |
|
035 | _avtls000339947 | ||
039 | 9 |
_a201509030320 _bVLOAD _c201404300407 _dVLOAD _y201402061013 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA75.5-76.95 | |
100 | 1 |
_aBramer, Max. _eautor _9299798 |
|
245 | 1 | 0 |
_aPrinciples of Data Mining / _cby Max Bramer. |
250 | _a2nd ed. 2013. | ||
264 | 1 |
_aLondon : _bSpringer London : _bImprint: Springer, _c2013. |
|
300 |
_axiv, 440 páginas 101 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aUndergraduate Topics in Computer Science, _x1863-7310 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aIntroduction to Data Mining -- Data for Data Mining -- Introduction to Classification: Naïve Bayes and Nearest Neighbour -- Using Decision Trees for Classification -- Decision Tree Induction: Using Entropy for Attribute Selection -- Decision Tree Induction: Using Frequency Tables for Attribute Selection -- Estimating the Predictive Accuracy of a Classifier -- Continuous Attributes -- Avoiding Overfitting of Decision Trees -- More About Entropy -- Inducing Modular Rules for Classification -- Measuring the Performance of a Classifier -- Dealing with Large Volumes of Data -- Ensemble Classification -- Comparing Classifiers -- Associate Rule Mining I -- Associate Rule Mining II -- Associate Rule Mining III -- Clustering -- Mining -- Appendix A – Essential Mathematics -- Appendix B – Datasets -- Appendix C – Sources of Further Information -- Appendix D – Glossary and Notation -- Appendix E – Solutions to Self-assessment Exercises -- Index. | |
520 | _aData Mining, the automatic extraction of implicit and potentially useful information from data, is increasingly used in commercial, scientific and other application areas. Principles of Data Mining explains and explores the principal techniques of Data Mining: for classification, association rule mining and clustering. Each topic is clearly explained and illustrated by detailed worked examples, with a focus on algorithms rather than mathematical formalism. It is written for readers without a strong background in mathematics or statistics, and any formulae used are explained in detail. This second edition has been expanded to include additional chapters on using frequent pattern trees for Association Rule Mining, comparing classifiers, ensemble classification and dealing with very large volumes of data. Principles of Data Mining aims to help general readers develop the necessary understanding of what is inside the 'black box' so they can use commercial data mining packages discriminatingly, as well as enabling advanced readers or academic researchers to understand or contribute to future technical advances in the field. Suitable as a textbook to support courses at undergraduate or postgraduate levels in a wide range of subjects including Computer Science, Business Studies, Marketing, Artificial Intelligence, Bioinformatics and Forensic Science. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781447148838 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4471-4884-5 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c286560 _d286560 |