000 | 03653nam a22003855i 4500 | ||
---|---|---|---|
001 | 286565 | ||
003 | MX-SnUAN | ||
005 | 20170705134213.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2013 xxk| o |||| 0|eng d | ||
020 |
_a9781447151852 _99781447151852 |
||
024 | 7 |
_a10.1007/9781447151852 _2doi |
|
035 | _avtls000340034 | ||
039 | 9 |
_a201509030842 _bVLOAD _c201404300409 _dVLOAD _y201402061015 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQ334-342 | |
100 | 1 |
_aAldrich, Chris. _eautor _9315260 |
|
245 | 1 | 0 |
_aUnsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods / _cby Chris Aldrich, Lidia Auret. |
264 | 1 |
_aLondon : _bSpringer London : _bImprint: Springer, _c2013. |
|
300 |
_axIx, 374 páginas 208 ilustraciones, 151 ilustraciones en color. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aAdvances in Computer Vision and Pattern Recognition, _x2191-6586 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aIntroduction -- Overview of Process Fault Diagnosis -- Artificial Neural Networks -- Statistical Learning Theory and Kernel-Based Methods -- Tree-Based Methods -- Fault Diagnosis in Steady State Process Systems -- Dynamic Process Monitoring -- Process Monitoring Using Multiscale Methods. | |
520 | _aAlgorithms for intelligent fault diagnosis of automated operations offer significant benefits to the manufacturing and process industries. Furthermore, machine learning methods enable such monitoring systems to handle nonlinearities and large volumes of data. This unique text/reference describes in detail the latest advances in Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data projections. Topics and features: Reviews the application of machine learning to process monitoring and fault diagnosis Discusses machine learning frameworks based on artificial neural networks, statistical learning theory and kernel-based methods, and tree-based methods Examines the application of machine learning to steady state and dynamic operations, with a focus on unsupervised learning Describes the use of spectral methods in process fault diagnosis This highly practical and clearly-structured work is an invaluable resource for all researchers and practitioners involved in process control, multivariate statistics and machine learning. Dr. Chris Aldrich is a Professor in the Department of Metallurgical and Minerals Engineering at Curtin University, Perth, Australia. Dr. Lidia Auret is a Lecturer in the Department of Process Engineering at Stellenbosch University, South Africa. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aAuret, Lidia. _eautor _9315261 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781447151845 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4471-5185-2 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c286565 _d286565 |