000 03456nam a22003855i 4500
001 286574
003 MX-SnUAN
005 20160429154507.0
007 cr nn 008mamaa
008 150903s2014 xxk| o |||| 0|eng d
020 _a9781447155263
_99781447155263
024 7 _a10.1007/9781447155263
_2doi
035 _avtls000340122
039 9 _a201509030313
_bVLOAD
_c201404300410
_dVLOAD
_y201402061017
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA370-380
100 1 _aWei, Juncheng.
_eautor
_9315279
245 1 0 _aMathematical Aspects of Pattern Formation in Biological Systems /
_cby Juncheng Wei, Matthias Winter.
264 1 _aLondon :
_bSpringer London :
_bImprint: Springer,
_c2014.
300 _axii, 319 páginas 20 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aApplied Mathematical Sciences,
_x0066-5452 ;
_v189
500 _aSpringer eBooks
505 0 _aIntroduction -- Existence of spikes for the Gierer-Meinhardt system in one dimension -- The Nonlocal Eigenvalue Problem (NLEP) -- Stability of spikes for the Gierer-Meinhardt system in one dimension -- Existence of spikes for the shadow Gierer-Meinhardt system -- Existence and stability of spikes for the Gierer-Meinhardt system in two dimensions -- The Gierer-Meinhardt system with inhomogeneous coefficients -- Other aspects of the Gierer-Meinhardt system -- The Gierer-Meinhardt system with saturation -- Spikes for other two-component reaction-diffusion systems -- Reaction-diffusion systems with many components -- Biological applications -- Appendix.
520 _aThis monograph is concerned with the mathematical analysis of patterns which are encountered in biological systems. It summarises, expands and relates results obtained in the field during the last fifteen years. It also links the results to biological applications and highlights their relevance to phenomena in nature. Of particular concern are large-amplitude patterns far from equilibrium in biologically relevant models. The approach adopted in the monograph is based on the following paradigms: • Examine the existence of spiky steady states in reaction-diffusion systems and select as observable patterns only the stable ones • Begin by exploring spatially homogeneous two-component activator-inhibitor systems in one or two space dimensions • Extend the studies by considering extra effects or related systems, each motivated by their specific roles in developmental biology, such as spatial inhomogeneities, large reaction rates, altered boundary conditions, saturation terms, convection, many-component systems. Mathematical Aspects of Pattern Formation in Biological Systems will be of interest to graduate students and researchers who are active in reaction-diffusion systems, pattern formation and mathematical biology.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aWinter, Matthias.
_eautor
_9315280
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781447155256
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4471-5526-3
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c286574
_d286574