000 | 03456nam a22003855i 4500 | ||
---|---|---|---|
001 | 286574 | ||
003 | MX-SnUAN | ||
005 | 20160429154507.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2014 xxk| o |||| 0|eng d | ||
020 |
_a9781447155263 _99781447155263 |
||
024 | 7 |
_a10.1007/9781447155263 _2doi |
|
035 | _avtls000340122 | ||
039 | 9 |
_a201509030313 _bVLOAD _c201404300410 _dVLOAD _y201402061017 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA370-380 | |
100 | 1 |
_aWei, Juncheng. _eautor _9315279 |
|
245 | 1 | 0 |
_aMathematical Aspects of Pattern Formation in Biological Systems / _cby Juncheng Wei, Matthias Winter. |
264 | 1 |
_aLondon : _bSpringer London : _bImprint: Springer, _c2014. |
|
300 |
_axii, 319 páginas 20 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aApplied Mathematical Sciences, _x0066-5452 ; _v189 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aIntroduction -- Existence of spikes for the Gierer-Meinhardt system in one dimension -- The Nonlocal Eigenvalue Problem (NLEP) -- Stability of spikes for the Gierer-Meinhardt system in one dimension -- Existence of spikes for the shadow Gierer-Meinhardt system -- Existence and stability of spikes for the Gierer-Meinhardt system in two dimensions -- The Gierer-Meinhardt system with inhomogeneous coefficients -- Other aspects of the Gierer-Meinhardt system -- The Gierer-Meinhardt system with saturation -- Spikes for other two-component reaction-diffusion systems -- Reaction-diffusion systems with many components -- Biological applications -- Appendix. | |
520 | _aThis monograph is concerned with the mathematical analysis of patterns which are encountered in biological systems. It summarises, expands and relates results obtained in the field during the last fifteen years. It also links the results to biological applications and highlights their relevance to phenomena in nature. Of particular concern are large-amplitude patterns far from equilibrium in biologically relevant models. The approach adopted in the monograph is based on the following paradigms: • Examine the existence of spiky steady states in reaction-diffusion systems and select as observable patterns only the stable ones • Begin by exploring spatially homogeneous two-component activator-inhibitor systems in one or two space dimensions • Extend the studies by considering extra effects or related systems, each motivated by their specific roles in developmental biology, such as spatial inhomogeneities, large reaction rates, altered boundary conditions, saturation terms, convection, many-component systems. Mathematical Aspects of Pattern Formation in Biological Systems will be of interest to graduate students and researchers who are active in reaction-diffusion systems, pattern formation and mathematical biology. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aWinter, Matthias. _eautor _9315280 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781447155256 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4471-5526-3 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c286574 _d286574 |