000 | 03463nam a22003975i 4500 | ||
---|---|---|---|
001 | 286604 | ||
003 | MX-SnUAN | ||
005 | 20160429154508.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2013 xxk| o |||| 0|eng d | ||
020 |
_a9781447148906 _99781447148906 |
||
024 | 7 |
_a10.1007/9781447148906 _2doi |
|
035 | _avtls000339949 | ||
039 | 9 |
_a201509030841 _bVLOAD _c201404300407 _dVLOAD _y201402061013 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA76.9.D343 | |
100 | 1 |
_aCordeiro, Robson L. F. _eautor _9315335 |
|
245 | 1 | 0 |
_aData Mining in Large Sets of Complex Data / _cby Robson L. F. Cordeiro, Christos Faloutsos, Caetano Traina Júnior. |
264 | 1 |
_aLondon : _bSpringer London : _bImprint: Springer, _c2013. |
|
300 |
_axI, 116 páginas 37 ilustraciones, 25 ilustraciones en color. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aSpringerBriefs in Computer Science, _x2191-5768 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aPreface -- Introduction -- Related Work and Concepts -- Clustering Methods for Moderate-to-High Dimensionality Data -- Halite -- BoW -- QMAS -- Conclusion. | |
520 | _aThe amount and the complexity of the data gathered by current enterprises are increasing at an exponential rate. Consequently, the analysis of Big Data is nowadays a central challenge in Computer Science, especially for complex data. For example, given a satellite image database containing tens of Terabytes, how can we find regions aiming at identifying native rainforests, deforestation or reforestation? Can it be made automatically? Based on the work discussed in this book, the answers to both questions are a sound “yes”, and the results can be obtained in just minutes. In fact, results that used to require days or weeks of hard work from human specialists can now be obtained in minutes with high precision. Data Mining in Large Sets of Complex Data discusses new algorithms that take steps forward from traditional data mining (especially for clustering) by considering large, complex datasets. Usually, other works focus in one aspect, either data size or complexity. This work considers both: it enables mining complex data from high impact applications, such as breast cancer diagnosis, region classification in satellite images, assistance to climate change forecast, recommendation systems for the Web and social networks; the data are large in the Terabyte-scale, not in Giga as usual; and very accurate results are found in just minutes. Thus, it provides a crucial and well timed contribution for allowing the creation of real time applications that deal with Big Data of high complexity in which mining on the fly can make an immeasurable difference, such as supporting cancer diagnosis or detecting deforestation. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aFaloutsos, Christos. _eautor _9313053 |
|
700 | 1 |
_aTraina Júnior, Caetano. _eautor _9315336 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781447148890 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4471-4890-6 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c286604 _d286604 |