000 03463nam a22003975i 4500
001 286604
003 MX-SnUAN
005 20160429154508.0
007 cr nn 008mamaa
008 150903s2013 xxk| o |||| 0|eng d
020 _a9781447148906
_99781447148906
024 7 _a10.1007/9781447148906
_2doi
035 _avtls000339949
039 9 _a201509030841
_bVLOAD
_c201404300407
_dVLOAD
_y201402061013
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA76.9.D343
100 1 _aCordeiro, Robson L. F.
_eautor
_9315335
245 1 0 _aData Mining in Large Sets of Complex Data /
_cby Robson L. F. Cordeiro, Christos Faloutsos, Caetano Traina Júnior.
264 1 _aLondon :
_bSpringer London :
_bImprint: Springer,
_c2013.
300 _axI, 116 páginas 37 ilustraciones, 25 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringerBriefs in Computer Science,
_x2191-5768
500 _aSpringer eBooks
505 0 _aPreface -- Introduction -- Related Work and Concepts -- Clustering Methods for Moderate-to-High Dimensionality Data -- Halite -- BoW -- QMAS -- Conclusion.
520 _aThe amount and the complexity of the data gathered by current enterprises are increasing at an exponential rate. Consequently, the analysis of Big Data is nowadays a central challenge in Computer Science, especially for complex data. For example, given a satellite image database containing tens of Terabytes, how can we find regions aiming at identifying native rainforests, deforestation or reforestation? Can it be made automatically? Based on the work discussed in this book, the answers to both questions are a sound “yes”, and the results can be obtained in just minutes. In fact, results that used to require days or weeks of hard work from human specialists can now be obtained in minutes with high precision. Data Mining in Large Sets of Complex Data discusses new algorithms that take steps forward from traditional data mining (especially for clustering) by considering large, complex datasets. Usually, other works focus in one aspect, either data size or complexity. This work considers both: it enables mining complex data from high impact applications, such as breast cancer diagnosis, region classification in satellite images, assistance to climate change forecast, recommendation systems for the Web and social networks; the data are large in the Terabyte-scale, not in Giga as usual; and very accurate results are found in just minutes. Thus, it provides a crucial and well timed contribution for allowing the creation of real time applications that deal with Big Data of high complexity in which mining on the fly can make an immeasurable difference, such as supporting cancer diagnosis or detecting deforestation.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aFaloutsos, Christos.
_eautor
_9313053
700 1 _aTraina Júnior, Caetano.
_eautor
_9315336
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781447148890
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4471-4890-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c286604
_d286604