000 | 03045nam a22003735i 4500 | ||
---|---|---|---|
001 | 286699 | ||
003 | MX-SnUAN | ||
005 | 20170705134214.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2013 xxk| o |||| 0|eng d | ||
020 |
_a9781447149231 _99781447149231 |
||
024 | 7 |
_a10.1007/9781447149231 _2doi |
|
035 | _avtls000339959 | ||
039 | 9 |
_a201509030841 _bVLOAD _c201404300407 _dVLOAD _y201402061013 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aTK5102.9 | |
100 | 1 |
_aThomson, Blaise. _eautor _9315484 |
|
245 | 1 | 0 |
_aStatistical Methods for Spoken Dialogue Management / _cby Blaise Thomson. |
264 | 1 |
_aLondon : _bSpringer London : _bImprint: Springer, _c2013. |
|
300 |
_axvii, 136 páginas 29 ilustraciones, 5 ilustraciones en color. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aSpringer Theses, Recognizing Outstanding Ph.D. Research, _x2190-5053 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aDialogue system theory -- Maintaining state -- Maintaining state - optimizations -- Policy design -- Evaluation -- Parameter learning. | |
520 | _aSpeech is the most natural mode of communication and yet attempts to build systems which support robust habitable conversations between a human and a machine have so far had only limited success. A key reason is that current systems treat speech input as equivalent to a keyboard or mouse, and behaviour is controlled by predefined scripts that try to anticipate what the user will say and act accordingly. But speech recognisers make many errors and humans are not predictable; the result is systems which are difficult to design and fragile in use. Statistical methods for spoken dialogue management takes a radically different view. It treats dialogue as the problem of inferring a user's intentions based on what is said. The dialogue is modelled as a probabilistic network and the input speech acts are observations that provide evidence for performing Bayesian inference. The result is a system which is much more robust to speech recognition errors and for which a dialogue strategy can be learned automatically using reinforcement learning. The thesis describes both the architecture, the algorithms needed for fast real-time inference over very large networks, model parameter estimation and policy optimisation. This ground-breaking work will be of interest both to practitioners in spoken dialogue systems and to cognitive scientists interested in models of human behaviour. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781447149224 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4471-4923-1 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c286699 _d286699 |