000 03045nam a22003735i 4500
001 286699
003 MX-SnUAN
005 20170705134214.0
007 cr nn 008mamaa
008 150903s2013 xxk| o |||| 0|eng d
020 _a9781447149231
_99781447149231
024 7 _a10.1007/9781447149231
_2doi
035 _avtls000339959
039 9 _a201509030841
_bVLOAD
_c201404300407
_dVLOAD
_y201402061013
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aTK5102.9
100 1 _aThomson, Blaise.
_eautor
_9315484
245 1 0 _aStatistical Methods for Spoken Dialogue Management /
_cby Blaise Thomson.
264 1 _aLondon :
_bSpringer London :
_bImprint: Springer,
_c2013.
300 _axvii, 136 páginas 29 ilustraciones, 5 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringer Theses, Recognizing Outstanding Ph.D. Research,
_x2190-5053
500 _aSpringer eBooks
505 0 _aDialogue system theory -- Maintaining state -- Maintaining state - optimizations -- Policy design -- Evaluation -- Parameter learning.
520 _aSpeech is the most natural mode of communication and yet attempts to build systems which support robust habitable conversations between a human and a machine have so far had only limited success. A key reason is that current systems treat speech input as equivalent to a keyboard or mouse, and behaviour is controlled by predefined scripts that try to anticipate what the user will say and act accordingly. But speech recognisers make many errors and humans are not predictable; the result is systems which are difficult to design and fragile in use. Statistical methods for spoken dialogue management takes a radically different view. It treats dialogue as the problem of inferring a user's intentions based on what is said. The dialogue is modelled as a probabilistic network and the input speech acts are observations that provide evidence for performing Bayesian inference. The result is a system which is much more robust to speech recognition errors and for which a dialogue strategy can be learned automatically using reinforcement learning. The thesis describes both the architecture, the algorithms needed for fast real-time inference over very large networks, model parameter estimation and policy optimisation. This ground-breaking work will be of interest both to practitioners in spoken dialogue systems and to cognitive scientists interested in models of human behaviour.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781447149224
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4471-4923-1
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c286699
_d286699