000 | 03937nam a22003855i 4500 | ||
---|---|---|---|
001 | 286705 | ||
003 | MX-SnUAN | ||
005 | 20170705134214.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2014 xxk| o |||| 0|eng d | ||
020 |
_a9781447153610 _99781447153610 |
||
024 | 7 |
_a10.1007/9781447153610 _2doi |
|
035 | _avtls000340080 | ||
039 | 9 |
_a201509030842 _bVLOAD _c201404300410 _dVLOAD _y201402061016 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA273.A1-274.9 | |
100 | 1 |
_aKlenke, Achim. _eautor _9315496 |
|
245 | 1 | 0 |
_aProbability Theory : _bA Comprehensive Course / _cby Achim Klenke. |
250 | _a2nd ed. 2014. | ||
264 | 1 |
_aLondon : _bSpringer London : _bImprint: Springer, _c2014. |
|
300 |
_axii, 638 páginas 46 ilustraciones, 20 ilustraciones en color. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aUniversitext, _x0172-5939 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aBasic Measure Theory -- Independence -- Generating Functions -- The Integral -- Moments and Laws of Large Numbers -- Convergence Theorems -- Lp-Spaces and the Radon–Nikodym Theorem -- Conditional Expectations -- Martingales -- Optional Sampling Theorems -- Martingale Convergence Theorems and Their Applications -- Backwards Martingales and Exchangeability -- Convergence of Measures -- Probability Measures on Product Spaces -- Characteristic Functions and the Central Limit Theorem -- Infinitely Divisible Distributions -- Markov Chains -- Convergence of Markov Chains -- Markov Chains and Electrical Networks -- Ergodic Theory -- Brownian Motion -- Law of the Iterated Logarithm -- Large Deviations -- The Poisson Point Process -- The Itˆo Integral -- Stochastic Differential Equations. | |
520 | _aThis second edition of the popular textbook contains a comprehensive course in modern probability theory. Overall, probabilistic concepts play an increasingly important role in mathematics, physics, biology, financial engineering and computer science. They help us in understanding magnetism, amorphous media, genetic diversity and the perils of random developments at financial markets, and they guide us in constructing more efficient algorithms. To address these concepts, the title covers a wide variety of topics, many of which are not usually found in introductory textbooks, such as: • limit theorems for sums of random variables • martingales • percolation • Markov chains and electrical networks • construction of stochastic processes • Poisson point process and infinite divisibility • large deviation principles and statistical physics • Brownian motion • stochastic integral and stochastic differential equations. The theory is developed rigorously and in a self-contained way, with the chapters on measure theory interlaced with the probabilistic chapters in order to display the power of the abstract concepts in probability theory. This second edition has been carefully extended and includes many new features. It contains updated figures (over 50), computer simulations and some difficult proofs have been made more accessible. A wealth of examples and more than 270 exercises as well as biographic details of key mathematicians support and enliven the presentation. It will be of use to students and researchers in mathematics and statistics in physics, computer science, economics and biology. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781447153603 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4471-5361-0 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c286705 _d286705 |