000 02972nam a22003735i 4500
001 286773
003 MX-SnUAN
005 20160429154516.0
007 cr nn 008mamaa
008 150903s2011 xxu| o |||| 0|eng d
020 _a9781461411055
_99781461411055
024 7 _a10.1007/9781461411055
_2doi
035 _avtls000340488
039 9 _a201509030348
_bVLOAD
_c201404300416
_dVLOAD
_y201402061026
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA614-614.97
100 1 _aNicolaescu, Liviu.
_eautor
_9305044
245 1 3 _aAn Invitation to Morse Theory /
_cby Liviu Nicolaescu.
264 1 _aNew York, NY :
_bSpringer New York,
_c2011.
300 _axvI, 353 páginas 47 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aUniversitext,
_x0172-5939
500 _aSpringer eBooks
505 0 _aPreface -- Notations and Conventions -- 1 Morse Functions -- 2 The Topology of Morse Functions -- 3 Applications -- 4 Morse-Smale Flows and Whitney Stratifications -- 5 Basics of Complex Morse Theory -- 6 Exercises and Solutions -- References -- Index.
520 _aThis self-contained treatment of Morse theory focuses on applications and is intended for a graduate course on differential or algebraic topology. The book is divided into three conceptually distinct parts. The first part contains the foundations of Morse theory. The second part consists of applications of Morse theory over the reals, while the last part describes the basics and some applications of complex Morse theory, a.k.a. Picard-Lefschetz theory.   This is the first textbook to include topics such as Morse-Smale flows, Floer homology, min-max theory, moment maps and equivariant cohomology, and complex Morse theory. The exposition is enhanced with examples, problems, and illustrations, and will be of interest to graduate students as well as researchers. The reader is expected to have some familiarity with cohomology theory and with the differential and integral calculus on smooth manifolds.   Some features of the second edition include added applications, such as Morse theory and the curvature of  knots, the cohomology of the moduli space of planar polygons, and the Duistermaat-Heckman formula. The second edition also includes a new chapter on Morse-Smale flows and Whitney stratifications, many new exercises, and various corrections from the first edition.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781461411048
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4614-1105-5
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c286773
_d286773