000 | 03832nam a22003855i 4500 | ||
---|---|---|---|
001 | 286825 | ||
003 | MX-SnUAN | ||
005 | 20170705134214.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2013 xxk| o |||| 0|eng d | ||
020 |
_a9781447149415 _99781447149415 |
||
024 | 7 |
_a10.1007/9781447149415 _2doi |
|
035 | _avtls000339965 | ||
039 | 9 |
_a201509030841 _bVLOAD _c201404300407 _dVLOAD _y201402061013 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aTA1637-1638 | |
100 | 1 |
_aShukla, K. K. _eautor _9315712 |
|
245 | 1 | 0 |
_aEfficient Algorithms for Discrete Wavelet Transform : _bWith Applications to Denoising and Fuzzy Inference Systems / _cby K. K. Shukla, Arvind K. Tiwari. |
264 | 1 |
_aLondon : _bSpringer London : _bImprint: Springer, _c2013. |
|
300 |
_aIx, 91 páginas 46 ilustraciones, 31 ilustraciones en color. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aSpringerBriefs in Computer Science, _x2191-5768 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aIntroduction -- Filter Banks and DWT -- Finite Precision Error Modeling and Analysis -- PVM Implementation of DWT-Based Image Denoising -- DWT-Based Power Quality Classification -- Conclusions and Future Directions. | |
520 | _aTransforms are an important part of an engineer’s toolkit for solving signal processing and polynomial computation problems. In contrast to the Fourier transform-based approaches where a fixed window is used uniformly for a range of frequencies, the wavelet transform uses short windows at high frequencies and long windows at low frequencies. This way, the characteristics of non-stationary disturbances can be more closely monitored. In other words, both time and frequency information can be obtained by wavelet transform. Instead of transforming a pure time description into a pure frequency description, the wavelet transform finds a good promise in a time-frequency description. Due to its inherent time-scale locality characteristics, the discrete wavelet transform (DWT) has received considerable attention in digital signal processing (speech and image processing), communication, computer science and mathematics. Wavelet transforms are known to have excellent energy compaction characteristics and are able to provide perfect reconstruction. Therefore, they are ideal for signal/image processing. The shifting (or translation) and scaling (or dilation) are unique to wavelets. Orthogonality of wavelets with respect to dilations leads to multigrid representation. The nature of wavelet computation forces us to carefully examine the implementation methodologies. As the computation of DWT involves filtering, an efficient filtering process is essential in DWT hardware implementation. In the multistage DWT, coefficients are calculated recursively, and in addition to the wavelet decomposition stage, extra space is required to store the intermediate coefficients. Hence, the overall performance depends significantly on the precision of the intermediate DWT coefficients. This work presents new implementation techniques of DWT, that are efficient in terms of computation requirement, storage requirement, and with better signal-to-noise ratio in the reconstructed signal. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aTiwari, Arvind K. _eautor _9315713 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781447149408 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4471-4941-5 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c286825 _d286825 |