000 | 03879nam a22003975i 4500 | ||
---|---|---|---|
001 | 286842 | ||
003 | MX-SnUAN | ||
005 | 20160429154520.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2011 xxu| o |||| 0|eng d | ||
020 |
_a9781461401957 _99781461401957 |
||
024 | 7 |
_a10.1007/9781461401957 _2doi |
|
035 | _avtls000340217 | ||
039 | 9 |
_a201509030843 _bVLOAD _c201404300412 _dVLOAD _y201402061019 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA331-355 | |
100 | 1 |
_aAgarwal, Ravi P. _eautor _9303350 |
|
245 | 1 | 3 |
_aAn Introduction to Complex Analysis / _cby Ravi P. Agarwal, Kanishka Perera, Sandra Pinelas. |
250 | _a1. | ||
264 | 1 |
_aBoston, MA : _bSpringer US, _c2011. |
|
300 |
_axiv, 331 páginas 94 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
500 | _aSpringer eBooks | ||
505 | 0 | _aPreface.-Complex Numbers.-Complex Numbers II -- Complex Numbers III.-Set Theory in the Complex Plane.-Complex Functions.-Analytic Functions I.-Analytic Functions II.-Elementary Functions I -- Elementary Functions II -- Mappings by Functions -- Mappings by Functions II -- Curves, Contours, and Simply Connected Domains -- Complex Integration -- Independence of Path -- Cauchy–Goursat Theorem -- Deformation Theorem -- Cauchy’s Integral Formula -- Cauchy’s Integral Formula for Derivatives -- Fundamental Theorem of Algebra -- Maximum Modulus Principle -- Sequences and Series of Numbers -- Sequences and Series of Functions -- Power Series -- Taylor’s Series -- Laurent’s Series -- Zeros of Analytic Functions -- Analytic Continuation -- Symmetry and Reflection -- Singularities and Poles I -- Singularities and Poles II -- Cauchy’s Residue Theorem -- Evaluation of Real Integrals by Contour Integration I -- Evaluation of Real Integrals by Contour Integration II -- Indented Contour Integrals -- Contour Integrals Involving Multi–valued Functions -- Summation of Series. Argument Principle and Rouch´e and Hurwitz Theorems -- Behavior of Analytic Mappings -- Conformal Mappings -- Harmonic Functions -- The Schwarz–Christoffel Transformation -- Infinite Products -- Weierstrass’s Factorization Theorem -- Mittag–Leffler’s Theorem -- Periodic Functions -- The Riemann Zeta Function -- Bieberbach’s Conjecture -- The Riemann Surface -- Julia and Mandelbrot Sets -- History of Complex Numbers -- References for Further Reading -- Index. | |
520 | _aThis textbook introduces the subject of complex analysis to advanced undergraduate and graduate students in a clear and concise manner. Key features of this textbook: -Effectively organizes the subject into easily manageable sections in the form of 50 class-tested lectures - Uses detailed examples to drive the presentation -Includes numerous exercise sets that encourage pursuing extensions of the material, each with an “Answers or Hints” section -covers an array of advanced topics which allow for flexibility in developing the subject beyond the basics -Provides a concise history of complex numbers An Introduction to Complex Analysis will be valuable to students in mathematics, engineering and other applied sciences. Prerequisites include a course in calculus. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aPerera, Kanishka. _eautor _9315750 |
|
700 | 1 |
_aPinelas, Sandra. _eautor _9315751 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781461401940 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4614-0195-7 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c286842 _d286842 |