000 | 03266nam a22003855i 4500 | ||
---|---|---|---|
001 | 286866 | ||
003 | MX-SnUAN | ||
005 | 20160429154520.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2013 xxk| o |||| 0|eng d | ||
020 |
_a9781447145134 _99781447145134 |
||
024 | 7 |
_a10.1007/9781447145134 _2doi |
|
035 | _avtls000339842 | ||
039 | 9 |
_a201509030319 _bVLOAD _c201404300406 _dVLOAD _y201402060945 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aTJ212-225 | |
100 | 1 |
_aGe, Zhiqiang. _eautor _9315781 |
|
245 | 1 | 0 |
_aMultivariate Statistical Process Control : _bProcess Monitoring Methods and Applications / _cby Zhiqiang Ge, Zhihuan Song. |
264 | 1 |
_aLondon : _bSpringer London : _bImprint: Springer, _c2013. |
|
300 |
_axviii, 193 páginas 90 ilustraciones, 25 ilustraciones en color. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aAdvances in Industrial Control, _x1430-9491 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aIntroduction -- An Overview of Conventional MSPC Methods -- Non-Gaussian Process Monitoring -- Fault Reconstruction and Identification -- Nonlinear Process Monitoring: Part I -- Nonlinear Process Monitoring: Part 2 -- Time-varying Process Monitoring -- Multimode Process Monitoring: Part 1 -- Multimode Process Monitoring: Part 2 -- Dynamic Process Monitoring -- Probabilistic Process Monitoring -- Plant-wide Process Monitoring: Multiblock Method -- Reference -- Index. | |
520 | _a Given their key position in the process control industry, process monitoring techniques have been extensively investigated by industrial practitioners and academic control researchers. Multivariate statistical process control (MSPC) is one of the most popular data-based methods for process monitoring and is widely used in various industrial areas. Effective routines for process monitoring can help operators run industrial processes efficiently at the same time as maintaining high product quality. Multivariate Statistical Process Control reviews the developments and improvements that have been made to MSPC over the last decade, and goes on to propose a series of new MSPC-based approaches for complex process monitoring. These new methods are demonstrated in several case studies from the chemical, biological, and semiconductor industrial areas. Control and process engineers, and academic researchers in the process monitoring, process control and fault detection and isolation (FDI) disciplines will be interested in this book. It can also be used to provide supplementary material and industrial insight for graduate and advanced undergraduate students, and graduate engineers. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aSong, Zhihuan. _eautor _9315782 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781447145127 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4471-4513-4 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c286866 _d286866 |