000 03009nam a22003615i 4500
001 286905
003 MX-SnUAN
005 20160429154522.0
007 cr nn 008mamaa
008 150903s2011 xxu| o |||| 0|eng d
020 _a9781461411352
_99781461411352
024 7 _a10.1007/9781461411352
_2doi
035 _avtls000340498
039 9 _a201509030825
_bVLOAD
_c201404300416
_dVLOAD
_y201402061027
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA299.6-433
100 1 _aStroock, Daniel W.
_eautor
_9315841
245 1 0 _aEssentials of Integration Theory for Analysis /
_cby Daniel W. Stroock.
264 1 _aNew York, NY :
_bSpringer New York,
_c2011.
300 _axii, 244 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aGraduate Texts in Mathematics,
_x0072-5285 ;
_v262
500 _aSpringer eBooks
520 _aEssentials of Integration Theory for Analysis is a substantial revision of the best-selling Birkhäuser title by the same author,  A Concise Introduction to the Theory of Integration. Highlights of this new textbook for the GTM series include revisions to Chapter 1 which add a section about the rate of convergence of Riemann sums and introduces a discussion of the Euler–MacLauren formula.  In Chapter 2, where Lebesque’s theory is introduced, a construction of the countably additive measure is done with sufficient generality to cover both Lebesque and Bernoulli  measures. Chapter 3 includes a proof of Lebesque’s differential theorem for all monotone functions and the concluding chapter has been expanded to include a proof of Carathéory’s  method for constructing measures and his result is applied to the construction of the Hausdorff measures. This new gem is appropriate as a text for a one-semester graduate course in integration theory and is complimented by the addition of several problems related to the new material.  The text is also highly useful for self-study. A complete solutions manual is available for instructors who adopt the text for their courses. Additional publications by Daniel W. Stroock:  An Introduction to Markov Processes,  ©2005 Springer (GTM 230), ISBN: 978-3-540-23499-9; A Concise Introduction to the Theory of Integration, © 1998 Birkhäuser Boston, ISBN: 978-0-8176-4073-6;  (with S.R.S. Varadhan) Multidimensional Diffusion Processes, © 1979 Springer (Classics in Mathematics), ISBN: 978-3-540-28998-2.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781461411345
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4614-1135-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c286905
_d286905