000 03342nam a22003855i 4500
001 286911
003 MX-SnUAN
005 20160429154522.0
007 cr nn 008mamaa
008 150903s2013 xxk| o |||| 0|eng d
020 _a9781447148173
_99781447148173
024 7 _a10.1007/9781447148173
_2doi
035 _avtls000339927
039 9 _a201509030841
_bVLOAD
_c201404300407
_dVLOAD
_y201402061013
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA440-699
100 1 _aJoswig, Michael.
_eautor
_9315853
245 1 0 _aPolyhedral and Algebraic Methods in Computational Geometry /
_cby Michael Joswig, Thorsten Theobald.
264 1 _aLondon :
_bSpringer London :
_bImprint: Springer,
_c2013.
300 _ax, 250 páginas 67 ilustraciones, 17 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aUniversitext,
_x0172-5939
500 _aSpringer eBooks
505 0 _aIntroduction and Overview -- Geometric Fundamentals -- Polytopes and Polyhedra -- Linear Programming -- Computation of Convex Hulls -- Voronoi Diagrams -- Delone Triangulations -- Algebraic and Geometric Foundations -- Gröbner Bases and Buchberger’s Algorithm -- Solving Systems of Polynomial Equations Using Gröbner Bases -- Reconstruction of Curves -- Plücker Coordinates and Lines in Space -- Applications of Non-Linear Computational Geometry -- Algebraic Structures -- Separation Theorems -- Algorithms and Complexity -- Software -- Notation.
520 _aPolyhedral and Algebraic Methods in Computational Geometry provides a thorough introduction into algorithmic geometry and its applications. It presents its primary topics from the viewpoints of discrete, convex and elementary algebraic geometry.   The first part of the book studies classical problems and techniques that refer to polyhedral structures. The authors include a study on algorithms for computing convex hulls as well as the construction of Voronoi diagrams and Delone triangulations.   The second part of the book develops the primary concepts of (non-linear) computational algebraic geometry. Here, the book looks at Gröbner bases and solving systems of polynomial equations. The theory is illustrated by applications in computer graphics, curve reconstruction and robotics.   Throughout the book, interconnections between computational geometry and other disciplines (such as algebraic geometry, optimization and numerical mathematics) are established.  Polyhedral and Algebraic Methods in Computational Geometry is directed towards advanced undergraduates in mathematics and computer science, as well as towards engineering students who are interested in the applications of computational geometry.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aTheobald, Thorsten.
_eautor
_9314324
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781447148166
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4471-4817-3
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c286911
_d286911