000 | 03342nam a22003855i 4500 | ||
---|---|---|---|
001 | 286911 | ||
003 | MX-SnUAN | ||
005 | 20160429154522.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2013 xxk| o |||| 0|eng d | ||
020 |
_a9781447148173 _99781447148173 |
||
024 | 7 |
_a10.1007/9781447148173 _2doi |
|
035 | _avtls000339927 | ||
039 | 9 |
_a201509030841 _bVLOAD _c201404300407 _dVLOAD _y201402061013 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA440-699 | |
100 | 1 |
_aJoswig, Michael. _eautor _9315853 |
|
245 | 1 | 0 |
_aPolyhedral and Algebraic Methods in Computational Geometry / _cby Michael Joswig, Thorsten Theobald. |
264 | 1 |
_aLondon : _bSpringer London : _bImprint: Springer, _c2013. |
|
300 |
_ax, 250 páginas 67 ilustraciones, 17 ilustraciones en color. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aUniversitext, _x0172-5939 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aIntroduction and Overview -- Geometric Fundamentals -- Polytopes and Polyhedra -- Linear Programming -- Computation of Convex Hulls -- Voronoi Diagrams -- Delone Triangulations -- Algebraic and Geometric Foundations -- Gröbner Bases and Buchberger’s Algorithm -- Solving Systems of Polynomial Equations Using Gröbner Bases -- Reconstruction of Curves -- Plücker Coordinates and Lines in Space -- Applications of Non-Linear Computational Geometry -- Algebraic Structures -- Separation Theorems -- Algorithms and Complexity -- Software -- Notation. | |
520 | _aPolyhedral and Algebraic Methods in Computational Geometry provides a thorough introduction into algorithmic geometry and its applications. It presents its primary topics from the viewpoints of discrete, convex and elementary algebraic geometry. The first part of the book studies classical problems and techniques that refer to polyhedral structures. The authors include a study on algorithms for computing convex hulls as well as the construction of Voronoi diagrams and Delone triangulations. The second part of the book develops the primary concepts of (non-linear) computational algebraic geometry. Here, the book looks at Gröbner bases and solving systems of polynomial equations. The theory is illustrated by applications in computer graphics, curve reconstruction and robotics. Throughout the book, interconnections between computational geometry and other disciplines (such as algebraic geometry, optimization and numerical mathematics) are established. Polyhedral and Algebraic Methods in Computational Geometry is directed towards advanced undergraduates in mathematics and computer science, as well as towards engineering students who are interested in the applications of computational geometry. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aTheobald, Thorsten. _eautor _9314324 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781447148166 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4471-4817-3 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c286911 _d286911 |