000 03619nam a22003855i 4500
001 286987
003 MX-SnUAN
005 20170705134214.0
007 cr nn 008mamaa
008 150903s2011 xxu| o |||| 0|eng d
020 _a9781461408338
_99781461408338
024 7 _a10.1007/9781461408338
_2doi
035 _avtls000340414
039 9 _a201509030348
_bVLOAD
_c201404300415
_dVLOAD
_y201402061024
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQC350-467
100 1 _aZalevsky, Zeev.
_eeditor.
_9315946
245 1 0 _aSuper-Resolved Imaging :
_bGeometrical and Diffraction Approaches /
_cedited by Zeev Zalevsky.
250 _a1.
264 1 _aNew York, NY :
_bSpringer New York,
_c2011.
300 _axvI, 116 páginas 65 ilustraciones, 21 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringerBriefs in Physics
500 _aSpringer eBooks
505 0 _aPreface -- Contents -- Chapter One -- 1.1 Fourier Optics -- 1.1.1 Free Space propagation: Fresnel & Fraunhofer integrals -- 1.1.2 Imaging system -- 1.2: Diffraction Resolution limitation -- 1.3: Geometrical Resolution limitation -- The effects of sampling by CCD (pixel shape & aliasing) -- 1.4 Super-resolution explained by Degrees of freedom number -- 1.5 Inverse problem statement of super-resolution -- References -- Chapter 2 -- 2.1 Single snap-shot double field optical zoom -- 2.1.1 Introduction -- 2.1.2 Theory -- 2.1.3. Simulation Investigation -- 2.2 Full Field of View Super-resolution Imaging based on Two Static Gratings and White Light Illumination -- 2.2.1 Introduction -- 2.2.2 Mathematical Analysis -- 2.2.3 Experimental Results -- 2.3 Super-resolution using gray level coding -- 2.3.1 Introduction -- 2.3.2 Theory -- 2.3.3 Experiment -- References -- Chapter 3 -- 3.1 Geometrical Super Resolution Using Code Division Multiplexing -- 3.1.1 Introduction -- 3.1.2 Theoretical Analysis -- 3.1.3 Computer Simulations -- 3.1.4 Experimental Results -- 3.2 Diffraction Super Resolution Using Code Division Multiplexing -- 3.2.1 Introduction -- 3.2.2 Theoretical Analysis -- 3.2.3 Computer Simulations -- 3.2.4 Experimental Results -- References -- Chapter 4 -- 4.1 Geometrical Super Resolved Imaging Using Non periodic Spatial Masking -- 4.1.1 Introduction -- 4.1.2 Theoretical Analysis -- 4.1.3 Experimental investigation -- 4.2 Random angular coding for super-resolved imaging -- 4.2.1 Introduction -- 4.2.2 Mathematical Derivation -- 4.2.3. Numerical Simulation of the System -- 4.2.4. Experimental results -- References.
520 _aIn this brief we review several approaches that provide super resolved imaging, overcoming the geometrical limitation of the detector as well as the diffraction effects set by the F number of the imaging lens. In order to obtain the super resolved enhancement, we use spatially non-uniform and/or random transmission structures to encode the image or the aperture planes. The desired resolution enhanced images are obtained by post-processing decoding of the captured data.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781461408321
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4614-0833-8
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c286987
_d286987