000 03406nam a22003855i 4500
001 287005
003 MX-SnUAN
005 20160429154526.0
007 cr nn 008mamaa
008 150903s2013 xxk| o |||| 0|eng d
020 _a9781447151227
_99781447151227
024 7 _a10.1007/9781447151227
_2doi
035 _avtls000340016
039 9 _a201509030321
_bVLOAD
_c201404300408
_dVLOAD
_y201402061015
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA312-312.5
100 1 _aMakarov, Boris.
_eautor
_9315975
245 1 0 _aReal Analysis: Measures, Integrals and Applications /
_cby Boris Makarov, Anatolii Podkorytov.
264 1 _aLondon :
_bSpringer London :
_bImprint: Springer,
_c2013.
300 _axIx, 772 páginas 23 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aUniversitext,
_x0172-5939
500 _aSpringer eBooks
505 0 _aMeasure -- The Lebesgue Model -- Measurable Functions -- The Integral -- The Product Measure -- Change of Variables in an Integral -- Integrals Dependent on a Parameter -- Surface Integrals -- Approximation and Convolution of the Space -- Fourier Series and the Fourier Transform -- Charges. The Radon-Nikodym Theory -- Integral Representation of Linear Functionals -- Appendices.
520 _aReal Analysis: Measures, Integrals and Applications is devoted to the basics of integration theory and its related topics. The main emphasis is made on the properties of the Lebesgue integral and various applications both classical and those rarely covered in literature.   This book provides a detailed introduction to Lebesgue measure and integration as well as the classical results concerning integrals of multivariable functions. It examines the concept of the Hausdorff measure, the properties of the area on smooth and Lipschitz surfaces, the divergence formula, and Laplace's method for finding the asymptotic behavior of integrals. The general theory is then applied to harmonic analysis, geometry, and topology. Preliminaries are provided on probability theory, including the study of the Rademacher functions as a sequence of independent random variables.   The book contains more than 600 examples and exercises. The reader who has mastered the first third of the book will be able to study other areas of mathematics that use integration, such as probability theory, statistics, functional analysis, partial probability theory, statistics, functional analysis, partial differential equations and others.   Real Analysis: Measures, Integrals and Applications is intended for advanced undergraduate and graduate students in mathematics and physics. It assumes that the reader is familiar with basic linear algebra and differential calculus of functions of several variables.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aPodkorytov, Anatolii.
_eautor
_9315976
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781447151210
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4471-5122-7
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c287005
_d287005