000 03235nam a22003855i 4500
001 287010
003 MX-SnUAN
005 20160429154526.0
007 cr nn 008mamaa
008 150903s2014 xxk| o |||| 0|eng d
020 _a9781447154600
_99781447154600
024 7 _a10.1007/9781447154600
_2doi
035 _avtls000340103
039 9 _a201509030842
_bVLOAD
_c201404300410
_dVLOAD
_y201402061017
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA297-299.4
100 1 _aJovanovi?, Boško S.
_eautor
_9315982
245 1 0 _aAnalysis of Finite Difference Schemes :
_bFor Linear Partial Differential Equations with Generalized Solutions /
_cby Boško S. Jovanovi?, Endre Süli.
264 1 _aLondon :
_bSpringer London :
_bImprint: Springer,
_c2014.
300 _axiii, 408 páginas 7 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringer Series in Computational Mathematics,
_x0179-3632 ;
_v46
500 _aSpringer eBooks
505 0 _aDistributions and function spaces -- Elliptic boundary-value problems -- Finite difference approximation of parabolic problems -- Finite difference approximation of hyperbolic problems.
520 _aThis book develops a systematic and rigorous mathematical theory of finite difference methods for linear elliptic, parabolic and hyperbolic partial differential equations with nonsmooth solutions. Finite difference methods are a classical class of techniques for the numerical approximation of partial differential equations. Traditionally, their convergence analysis presupposes the smoothness of the coefficients, source terms, initial and boundary data, and of the associated solution to the differential equation. This then enables the application of elementary analytical tools to explore their stability and accuracy. The assumptions on the smoothness of the data and of the associated analytical solution are however frequently unrealistic. There is a wealth of boundary – and initial – value problems, arising from various applications in physics and engineering, where the data and the corresponding solution exhibit lack of regularity. In such instances classical techniques for the error analysis of finite difference schemes break down. The objective of this book is to develop the mathematical theory of finite difference schemes for linear partial differential equations with nonsmooth solutions. Analysis of Finite Difference Schemes is aimed at researchers and graduate students interested in the mathematical theory of numerical methods for the approximate solution of partial differential equations.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aSüli, Endre.
_eautor
_9315983
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781447154594
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4471-5460-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c287010
_d287010