000 | 03235nam a22003855i 4500 | ||
---|---|---|---|
001 | 287010 | ||
003 | MX-SnUAN | ||
005 | 20160429154526.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2014 xxk| o |||| 0|eng d | ||
020 |
_a9781447154600 _99781447154600 |
||
024 | 7 |
_a10.1007/9781447154600 _2doi |
|
035 | _avtls000340103 | ||
039 | 9 |
_a201509030842 _bVLOAD _c201404300410 _dVLOAD _y201402061017 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA297-299.4 | |
100 | 1 |
_aJovanovi?, Boško S. _eautor _9315982 |
|
245 | 1 | 0 |
_aAnalysis of Finite Difference Schemes : _bFor Linear Partial Differential Equations with Generalized Solutions / _cby Boško S. Jovanovi?, Endre Süli. |
264 | 1 |
_aLondon : _bSpringer London : _bImprint: Springer, _c2014. |
|
300 |
_axiii, 408 páginas 7 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aSpringer Series in Computational Mathematics, _x0179-3632 ; _v46 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aDistributions and function spaces -- Elliptic boundary-value problems -- Finite difference approximation of parabolic problems -- Finite difference approximation of hyperbolic problems. | |
520 | _aThis book develops a systematic and rigorous mathematical theory of finite difference methods for linear elliptic, parabolic and hyperbolic partial differential equations with nonsmooth solutions. Finite difference methods are a classical class of techniques for the numerical approximation of partial differential equations. Traditionally, their convergence analysis presupposes the smoothness of the coefficients, source terms, initial and boundary data, and of the associated solution to the differential equation. This then enables the application of elementary analytical tools to explore their stability and accuracy. The assumptions on the smoothness of the data and of the associated analytical solution are however frequently unrealistic. There is a wealth of boundary – and initial – value problems, arising from various applications in physics and engineering, where the data and the corresponding solution exhibit lack of regularity. In such instances classical techniques for the error analysis of finite difference schemes break down. The objective of this book is to develop the mathematical theory of finite difference schemes for linear partial differential equations with nonsmooth solutions. Analysis of Finite Difference Schemes is aimed at researchers and graduate students interested in the mathematical theory of numerical methods for the approximate solution of partial differential equations. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aSüli, Endre. _eautor _9315983 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781447154594 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4471-5460-0 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c287010 _d287010 |