000 03180nam a22003855i 4500
001 287047
003 MX-SnUAN
005 20160429154527.0
007 cr nn 008mamaa
008 150903s2013 xxk| o |||| 0|eng d
020 _a9781447148357
_99781447148357
024 7 _a10.1007/9781447148357
_2doi
035 _avtls000339933
039 9 _a201509030320
_bVLOAD
_c201404300407
_dVLOAD
_y201402061013
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA313
100 1 _aBarreira, Luis.
_eautor
_9316044
245 1 0 _aDynamical Systems :
_bAn Introduction /
_cby Luis Barreira, Claudia Valls.
264 1 _aLondon :
_bSpringer London :
_bImprint: Springer,
_c2013.
300 _aIx, 209 páginas 44 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aUniversitext,
_x0172-5939
500 _aSpringer eBooks
505 0 _aIntroduction -- Basic Notions and Examples -- Topological Dynamics -- Low-Dimensional Dynamics -- Hyperbolic Dynamics I -- Hyperbolic Dynamics II -- Symbolic Dynamics -- Ergodic Theory.
520 _aThe theory of dynamical systems is a broad and active research subject with connections to most parts of mathematics. Dynamical Systems: An Introduction undertakes the difficult task to provide a self-contained and compact introduction. Topics covered include topological, low-dimensional, hyperbolic and symbolic dynamics, as well as a brief introduction to ergodic theory. In particular, the authors consider topological recurrence, topological entropy, homeomorphisms and diffeomorphisms of the circle, Sharkovski's ordering, the Poincaré-Bendixson theory, and the construction of stable manifolds, as well as an introduction to geodesic flows and the study of hyperbolicity (the latter is often absent in a first introduction). Moreover, the authors introduce the basics of symbolic dynamics, the construction of symbolic codings, invariant measures, Poincaré's recurrence theorem and Birkhoff's ergodic theorem. The exposition is mathematically rigorous, concise and direct: all statements (except for some results from other areas) are proven. At the same time, the text illustrates the theory with many examples and 140 exercises of variable levels of difficulty. The only prerequisites are a background in linear algebra, analysis and elementary topology. This is a textbook primarily designed for a one-semester or two-semesters course at the advanced undergraduate or beginning graduate levels. It can also be used for self-study and as a starting point for more advanced topics.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aValls, Claudia.
_eautor
_9316045
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781447148340
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4471-4835-7
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c287047
_d287047