000 | 02951nam a22003615i 4500 | ||
---|---|---|---|
001 | 287327 | ||
003 | MX-SnUAN | ||
005 | 20170705134215.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2012 xxk| o |||| 0|eng d | ||
020 |
_a9781447143215 _99781447143215 |
||
024 | 7 |
_a10.1007/9781447143215 _2doi |
|
035 | _avtls000339785 | ||
039 | 9 |
_a201509030840 _bVLOAD _c201404300405 _dVLOAD _y201402060943 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aT385 | |
100 | 1 |
_aVince, John. _eautor _9306214 |
|
245 | 1 | 0 |
_aMatrix Transforms for Computer Games and Animation / _cby John Vince. |
264 | 1 |
_aLondon : _bSpringer London : _bImprint: Springer, _c2012. |
|
300 |
_axI, 166 páginas 45 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
500 | _aSpringer eBooks | ||
505 | 0 | _aPreface -- Introduction -- Introduction to Matrix Notation -- Determinants -- Matrices -- Matrix Transforms -- Transforms -- Quaternions -- Conclusion -- Composite Point Rotation Sequences -- Index. | |
520 | _aMatrix transforms are ubiquitous within the world of computer graphics, where they have become an invaluable tool in a programmer’s toolkit for solving everything from 2D image scaling to 3D rotation about an arbitrary axis. Virtually every software system and hardware graphics processor uses matrices to undertake operations such as scaling, translation, reflection and rotation. Nevertheless, for some newcomers to the world of computer games and animation, matrix notation can appear obscure and challenging. Matrices and determinants were originally used to solve groups of simultaneous linear equations, and were subsequently embraced by the computer graphics community to describe the geometric operations for manipulating two- and three-dimensional structures. Consequently, to place matrix notation within an historical context, the author provides readers with some useful background to their development, alongside determinants. Although it is assumed that the reader is familiar with everyday algebra and the solution of simultaneous linear equations, Matrix Transforms for Computer Games and Animation does not expect any prior knowledge of matrix notation. It includes chapters on matrix notation, determinants, matrices, 2D transforms, 3D transforms and quaternions, and includes many worked examples to illustrate their practical use. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781447143208 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4471-4321-5 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c287327 _d287327 |