000 02951nam a22003615i 4500
001 287327
003 MX-SnUAN
005 20170705134215.0
007 cr nn 008mamaa
008 150903s2012 xxk| o |||| 0|eng d
020 _a9781447143215
_99781447143215
024 7 _a10.1007/9781447143215
_2doi
035 _avtls000339785
039 9 _a201509030840
_bVLOAD
_c201404300405
_dVLOAD
_y201402060943
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aT385
100 1 _aVince, John.
_eautor
_9306214
245 1 0 _aMatrix Transforms for Computer Games and Animation /
_cby John Vince.
264 1 _aLondon :
_bSpringer London :
_bImprint: Springer,
_c2012.
300 _axI, 166 páginas 45 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aPreface -- Introduction -- Introduction to Matrix Notation -- Determinants -- Matrices -- Matrix Transforms -- Transforms -- Quaternions -- Conclusion -- Composite Point Rotation Sequences -- Index.
520 _aMatrix transforms are ubiquitous within the world of computer graphics, where they have become an invaluable tool in a programmer’s toolkit for solving everything from 2D image scaling to 3D rotation about an arbitrary axis. Virtually every software system and hardware graphics processor uses matrices to undertake operations such as scaling, translation, reflection and rotation. Nevertheless, for some newcomers to the world of computer games and animation, matrix notation can appear obscure and challenging. Matrices and determinants were originally used to solve groups of simultaneous linear equations, and were subsequently embraced by the computer graphics community to describe the geometric operations for manipulating two- and three-dimensional structures. Consequently, to place matrix notation within an historical context, the author provides readers with some useful background to their development, alongside determinants. Although it is assumed that the reader is familiar with everyday algebra and the solution of simultaneous linear equations, Matrix Transforms for Computer Games and Animation does not expect any prior knowledge of matrix notation. It includes chapters on matrix notation, determinants, matrices, 2D transforms, 3D transforms and quaternions, and includes many worked examples to illustrate their practical use.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781447143208
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4471-4321-5
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c287327
_d287327