000 | 03075nam a22003735i 4500 | ||
---|---|---|---|
001 | 287355 | ||
003 | MX-SnUAN | ||
005 | 20160429154544.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2012 xxk| o |||| 0|eng d | ||
020 |
_a9781447121589 _99781447121589 |
||
024 | 7 |
_a10.1007/9781447121589 _2doi |
|
035 | _avtls000339503 | ||
039 | 9 |
_a201509030317 _bVLOAD _c201404300401 _dVLOAD _y201402060936 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA241-247.5 | |
100 | 1 |
_aMorishita, Masanori. _eautor _9316487 |
|
245 | 1 | 0 |
_aKnots and Primes : _bAn Introduction to Arithmetic Topology / _cby Masanori Morishita. |
264 | 1 |
_aLondon : _bSpringer London, _c2012. |
|
300 |
_axI, 191 páginas 42 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aUniversitext, _x0172-5939 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aPreliminaries - Fundamental Groups and Galois Groups -- Knots and Primes, 3-Manifolds and Number Rings -- Linking Numbers and Legendre Symbols -- Decompositions of Knots and Primes -- Homology Groups and Ideal Class Groups I - Genus Theory -- Link Groups and Galois Groups with Restricted Ramification -- Milnor Invariants and Multiple Power Residue Symbols -- Alexander Modules and Iwasawa Modules -- Homology Groups and Ideal Class Groups II - Higher Order Genus Theory -- Homology Groups and Ideal Class Groups III - Asymptotic Formulas -- Torsions and the Iwasawa Main Conjecture -- Moduli Spaces of Representations of Knot and Prime Groups -- Deformations of Hyperbolic Structures and of p-adic Ordinary Modular Forms. | |
520 | _aThis is a foundation for arithmetic topology - a new branch of mathematics which is focused upon the analogy between knot theory and number theory. Starting with an informative introduction to its origins, namely Gauss, this text provides a background on knots, three manifolds and number fields. Common aspects of both knot theory and number theory, for instance knots in three manifolds versus primes in a number field, are compared throughout the book. These comparisons begin at an elementary level, slowly building up to advanced theories in later chapters. Definitions are carefully formulated and proofs are largely self-contained. When necessary, background information is provided and theory is accompanied with a number of useful examples and illustrations, making this a useful text for both undergraduates and graduates in the field of knot theory, number theory and geometry. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781447121572 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4471-2158-9 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c287355 _d287355 |