000 03075nam a22003735i 4500
001 287355
003 MX-SnUAN
005 20160429154544.0
007 cr nn 008mamaa
008 150903s2012 xxk| o |||| 0|eng d
020 _a9781447121589
_99781447121589
024 7 _a10.1007/9781447121589
_2doi
035 _avtls000339503
039 9 _a201509030317
_bVLOAD
_c201404300401
_dVLOAD
_y201402060936
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA241-247.5
100 1 _aMorishita, Masanori.
_eautor
_9316487
245 1 0 _aKnots and Primes :
_bAn Introduction to Arithmetic Topology /
_cby Masanori Morishita.
264 1 _aLondon :
_bSpringer London,
_c2012.
300 _axI, 191 páginas 42 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aUniversitext,
_x0172-5939
500 _aSpringer eBooks
505 0 _aPreliminaries - Fundamental Groups and Galois Groups -- Knots and Primes, 3-Manifolds and Number Rings -- Linking Numbers and Legendre Symbols -- Decompositions of Knots and Primes -- Homology Groups and Ideal Class Groups I - Genus Theory -- Link Groups and Galois Groups with Restricted Ramification -- Milnor Invariants and Multiple Power Residue Symbols -- Alexander Modules and Iwasawa Modules -- Homology Groups and Ideal Class Groups II - Higher Order Genus Theory -- Homology Groups and Ideal Class Groups III - Asymptotic Formulas -- Torsions and the Iwasawa Main Conjecture -- Moduli Spaces of Representations of Knot and Prime Groups -- Deformations of Hyperbolic Structures and of p-adic Ordinary Modular Forms.
520 _aThis is a foundation for arithmetic topology - a new branch of mathematics which is focused upon the analogy between knot theory and number theory.  Starting with an informative introduction to its origins, namely Gauss, this text provides a background on knots, three manifolds and number fields. Common aspects of both knot theory and number theory, for instance knots in three manifolds versus primes in a number field, are compared throughout the book. These comparisons begin at an elementary level, slowly building up to advanced theories in later chapters. Definitions are carefully formulated and proofs are largely self-contained. When necessary, background information is provided and theory is accompanied  with a number of useful examples and illustrations, making this a useful text for both undergraduates and graduates in the field of knot theory, number theory and geometry.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781447121572
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4471-2158-9
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c287355
_d287355