000 04281nam a22003975i 4500
001 287403
003 MX-SnUAN
005 20160429154546.0
007 cr nn 008mamaa
008 150903s2012 xxk| o |||| 0|eng d
020 _a9781447140757
_99781447140757
024 7 _a10.1007/9781447140757
_2doi
035 _avtls000339711
039 9 _a201509030318
_bVLOAD
_c201404300404
_dVLOAD
_y201402060942
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA76.9.M35
100 1 _aBærentzen, Jakob Andreas.
_eautor
_9316562
245 1 0 _aGuide to Computational Geometry Processing :
_bFoundations, Algorithms, and Methods /
_cby Jakob Andreas Bærentzen, Jens Gravesen, François Anton, Henrik Aanæs.
264 1 _aLondon :
_bSpringer London :
_bImprint: Springer,
_c2012.
300 _axviii, 325 páginas 174 ilustraciones, 17 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aPart I: Mathematical Preliminaries -- Vector Spaces, Affine Spaces, and Metric Spaces -- Differential Geometry -- Finite Difference Methods for Partial Differential Equations -- Part II: Computational Geometry Processing -- Polygonal Meshes -- Splines -- Subdivision -- Curvature in Triangle Meshes -- Mesh Smoothing and Variational Subdivision -- Parametrization of Meshes -- Simplifying and Optimizing Triangle Meshes -- Spatial Data Indexing and Point Location -- Convex Hulls -- Triangle Mesh Generation: Delaunay Triangulation -- 3D Surface Registration via Iterative Closest Point (ICP) -- Surface Reconstruction using Radial Basis Functions -- Volumetric Methods for Surface Reconstruction and Manipulation -- Isosurface Polygonization.
520 _aOptical scanning is rapidly becoming ubiquitous. From industrial laser scanners to medical CT, MR and 3D ultrasound scanners, numerous organizations now have easy access to optical acquisition devices that provide huge volumes of image data. However, the raw geometry data acquired must first be processed before it is useful. This Guide to Computational Geometry Processing reviews the algorithms for processing geometric data, with a practical focus on important techniques not covered by traditional courses on computer vision and computer graphics. This is balanced with an introduction to the theoretical and mathematical underpinnings of each technique, enabling the reader to not only implement a given method, but also to understand the ideas behind it, its limitations and its advantages. Topics and features: Presents an overview of the underlying mathematical theory, covering vector spaces, metric space, affine spaces, differential geometry, and finite difference methods for derivatives and differential equations Reviews geometry representations, including polygonal meshes, splines, and subdivision surfaces Examines techniques for computing curvature from polygonal meshes Describes algorithms for mesh smoothing, mesh parametrization, and mesh optimization and simplification Discusses point location databases and convex hulls of point sets Investigates the reconstruction of triangle meshes from point clouds, including methods for registration of point clouds and surface reconstruction Provides additional material at a supplementary website Includes self-study exercises throughout the text Graduate students will find this text a valuable, hands-on guide to developing key skills in geometry processing. The book will also serve as a useful reference for professionals wishing to improve their competency in this area.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aGravesen, Jens.
_eautor
_9316563
700 1 _aAnton, François.
_eautor
_9316564
700 1 _aAanæs, Henrik.
_eautor
_9316565
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781447140740
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4471-4075-7
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c287403
_d287403