000 03727nam a22003735i 4500
001 287482
003 MX-SnUAN
005 20170705134215.0
007 cr nn 008mamaa
008 150903s2012 xxk| o |||| 0|eng d
020 _a9781447123279
_99781447123279
024 7 _a10.1007/9781447123279
_2doi
035 _avtls000339557
039 9 _a201509030839
_bVLOAD
_c201404300402
_dVLOAD
_y201402060938
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aTA169.7
100 1 _aGrigoriu, Mircea.
_eautor
_9316684
245 1 0 _aStochastic Systems :
_bUncertainty Quantification and Propagation /
_cby Mircea Grigoriu.
264 1 _aLondon :
_bSpringer London :
_bImprint: Springer,
_c2012.
300 _axI, 529 páginas 136 ilustraciones, 61 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringer Series in Reliability Engineering,
_x1614-7839
500 _aSpringer eBooks
505 0 _aProbability Essentials -- Random Functions -- Probabilistic Models -- Stochastic Integrals and Itô's Formula -- Properties of Solutions of Stochastic Equations -- Stochastic Equations with Small Uncertainty -- Stochastic Algebraic Equations -- Stochastic Differential Equations with Deterministic Coefficients -- Stochastic Differential Equations with Random Coefficients.
520 _aUncertainty is an inherent feature of both properties of physical systems and the inputs to these systems that needs to be quantified for cost effective and reliable designs. The states of these systems satisfy equations with random entries, referred to as stochastic equations, so that they are random functions of time and/or space. The solution of stochastic equations poses notable technical difficulties that are frequently circumvented by heuristic assumptions at the expense of accuracy and rigor. The main objective of Stochastic Systems is to promoting the development of accurate and efficient methods for solving stochastic equations and to foster interactions between engineers, scientists, and mathematicians. To achieve these objectives Stochastic Systems presents: ·         A clear and brief review of essential concepts on probability theory, random functions, stochastic calculus, Monte Carlo simulation, and functional analysis   ·          Probabilistic models for random variables and functions needed to formulate stochastic equations describing realistic problems in engineering and applied sciences   ·          Practical methods for quantifying the uncertain parameters in the definition of stochastic equations, solving approximately these equations, and assessing the accuracy of approximate solutions   Stochastic Systems provides key information for researchers, graduate students, and engineers who are interested in the formulation and solution of stochastic problems encountered in a broad range of disciplines. Numerous examples are used to clarify and illustrate theoretical concepts and methods for solving stochastic equations. The extensive bibliography and index at the end of the book constitute an ideal resource for both theoreticians and practitioners.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781447123262
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4471-2327-9
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c287482
_d287482