000 03350nam a22003855i 4500
001 287520
003 MX-SnUAN
005 20160429154550.0
007 cr nn 008mamaa
008 150903s2011 xxu| o |||| 0|eng d
020 _a9781441999085
_99781441999085
024 7 _a10.1007/9781441999085
_2doi
035 _avtls000339466
039 9 _a201509030316
_bVLOAD
_c201404300400
_dVLOAD
_y201402060936
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA641-670
100 1 _aRovenski, Vladimir.
_eautor
_9305225
245 1 0 _aTopics in Extrinsic Geometry of Codimension-One Foliations /
_cby Vladimir Rovenski, Pawe? Walczak.
250 _a1.
264 1 _aNew York, NY :
_bSpringer New York,
_c2011.
300 _axv, 114 páginas 6 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringerBriefs in Mathematics,
_x2191-8198
500 _aSpringer eBooks
520 _aExtrinsic geometry describes properties of foliations on Riemannian manifolds which can be expressed in terms of the second fundamental form of the leaves. The authors of Topics in Extrinsic Geometry of Codimension-One Foliations achieve a technical tour de force, which will lead to important geometric results.   The Integral Formulae, introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliations, minimizing volume and energy defined for vector or plane fields on manifolds, and existence of foliations whose leaves enjoy given geometric properties. The Integral Formulae steams from a Reeb formula, for foliations on space forms which generalize the classical ones. For a special auxiliary functions the formulae involve the Newton transformations of the Weingarten operator.  The central topic of this book is Extrinsic Geometric Flow (EGF) on foliated manifolds, which may be a tool for prescribing extrinsic geometric properties of foliations. To develop EGF, one needs Variational Formulae, revealed in chapter 2, which expresses a change in different extrinsic geometric quantities of a fixed foliation under leaf-wise variation of the Riemannian Structure of the ambient manifold. Chapter 3 defines a general notion of EGF and studies the evolution of Riemannian metrics along the trajectories of this flow(e.g., describes the short-time existence and uniqueness theory and estimate the maximal existence time).Some special solutions (called Extrinsic Geometric Solutions) of EGF are presented and are of great interest, since they provide Riemannian Structures with very particular geometry of the leaves.  This work is aimed at those who have an interest in the differential geometry of submanifolds and foliations of Riemannian manifolds.   
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aWalczak, Pawe?.
_eautor
_9316734
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781441999078
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4419-9908-5
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c287520
_d287520