000 03759nam a22003735i 4500
001 287565
003 MX-SnUAN
005 20160429154552.0
007 cr nn 008mamaa
008 150903s2012 xxk| o |||| 0|eng d
020 _a9781447123330
_99781447123330
024 7 _a10.1007/9781447123330
_2doi
035 _avtls000339559
039 9 _a201509030839
_bVLOAD
_c201404300402
_dVLOAD
_y201402060938
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aTJ212-225
100 1 _aTakács, Gergely.
_eautor
_9316804
245 1 0 _aModel Predictive Vibration Control :
_bEfficient Constrained MPC Vibration Control for Lightly Damped Mechanical Structures /
_cby Gergely Takács, Boris Roha?-Ilkiv.
264 1 _aLondon :
_bSpringer London,
_c2012.
300 _axxxvii, 515 páginas 170 ilustraciones, 4 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _a1. Introduction -- 2. Basics of Vibration Dynamics -- 3. Smart Materials in Active Vibration Control -- 4. Algorithms in Active Vibration Control -- 5. Laboratory Demonstration Hardware for AVC -- 6. Basic MPC Formulation -- 7. Stability and Feasibility of MPC -- 8. Efficient MPC Algorithms -- 9. Applications of Model Predictive Vibration Control -- 10. MPC Implementation for Vibration Control -- 11. Simulation Study of Model Predictive Vibration Control -- 12. Experimental Model Predictive Vibration Control -- A. FE Modeling of the Active Structure -- B. MPC Code Implementation Details.
520 _aReal-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: ·         the implementation of computationally efficient algorithms ·         control strategies in simulation and experiment and ·         typical hardware requirements for piezoceramics actuated smart structures.   The use of a simple laboratory model and inclusion of over 170  illustrations provides readers with clear and methodical explanations, making Model Predictive Vibration Control the ideal support material for graduates, researchers and industrial practitioners with an interest in efficient predictive control to be utilized in active vibration attenuation. 
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aRoha?-Ilkiv, Boris.
_eautor
_9316805
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781447123323
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4471-2333-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c287565
_d287565