000 | 03198nam a22003855i 4500 | ||
---|---|---|---|
001 | 287638 | ||
003 | MX-SnUAN | ||
005 | 20160429154555.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2011 xxu| o |||| 0|eng d | ||
020 |
_a9781441996503 _99781441996503 |
||
024 | 7 |
_a10.1007/9781441996503 _2doi |
|
035 | _avtls000339381 | ||
039 | 9 |
_a201509030838 _bVLOAD _c201404300359 _dVLOAD _y201402060934 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA276-280 | |
100 | 1 |
_aEveritt, Brian. _eautor _9303662 |
|
245 | 1 | 3 |
_aAn Introduction to Applied Multivariate Analysis with R / _cby Brian Everitt, Torsten Hothorn. |
264 | 1 |
_aNew York, NY : _bSpringer New York, _c2011. |
|
300 |
_axiv, 274 páginas 92 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 | _aUse R | |
500 | _aSpringer eBooks | ||
505 | 0 | _aMultivariate data and multivariate analysis -- Looking at multivariate data: visualization -- Principal components analysis -- Multidimensional scaling.- Exploratory factor analysis -- Cluster analysis -- Confirmatory factor analysis and structural equation models -- The analysis of repeated measures data.-. | |
520 | _aThe majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aHothorn, Torsten. _eautor _9316921 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9781441996497 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4419-9650-3 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c287638 _d287638 |