000 03584nam a22003975i 4500
001 287705
003 MX-SnUAN
005 20160429154558.0
007 cr nn 008mamaa
008 150903s2012 xxk| o |||| 0|eng d
020 _a9781447143932
_99781447143932
024 7 _a10.1007/9781447143932
_2doi
035 _avtls000339805
039 9 _a201509030840
_bVLOAD
_c201404300405
_dVLOAD
_y201402060944
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA612.33
100 1 _aDundas, Bjørn Ian.
_eautor
_9317033
245 1 4 _aThe Local Structure of Algebraic K-Theory /
_cby Bjørn Ian Dundas, Thomas G. Goodwillie, Randy McCarthy.
264 1 _aLondon :
_bSpringer London :
_bImprint: Springer,
_c2012.
300 _axv, 435 páginas 5 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aAlgebra and Applications,
_x1572-5553 ;
_v18
500 _aSpringer eBooks
505 0 _aAlgebraic K-theory -- Gamma-spaces and S-algebras -- Reductions -- Topological Hochschild Homology -- The Trace K ? THH -- Topological Cyclic Homology -- The Comparison of K-theory and TC.
520 _aAlgebraic K-theory encodes important invariants for several mathematical disciplines, spanning from geometric topology and functional analysis to number theory and algebraic geometry. As is commonly encountered, this powerful mathematical object is very hard to calculate. Apart from Quillen's calculations of finite fields and Suslin's calculation of algebraically closed fields, few complete calculations were available before the discovery of homological invariants offered by motivic cohomology and topological cyclic homology. This book covers the connection between algebraic K-theory and Bökstedt, Hsiang and Madsen's topological cyclic homology and proves that the difference between the theories are ‘locally constant’. The usefulness of this theorem stems from being more accessible for calculations than K-theory, and hence a single calculation of K-theory can be used with homological calculations to obtain a host of ‘nearby’ calculations in K-theory. For instance, Quillen's calculation of the K-theory of finite fields gives rise to Hesselholt and Madsen's calculations for local fields, and Voevodsky's calculations for the integers give insight into the diffeomorphisms of manifolds. In addition to the proof of the full integral version of the local correspondence between K-theory and topological cyclic homology, the book provides an introduction to the necessary background in algebraic K-theory and highly structured homotopy theory; collecting all necessary tools into one common framework. It relies on simplicial techniques, and contains an appendix summarizing the methods widely used in the field. The book is intended for graduate students and scientists interested in algebraic K-theory, and presupposes a basic knowledge of algebraic topology.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aGoodwillie, Thomas G.
_eautor
_9317034
700 1 _aMcCarthy, Randy.
_eautor
_9317035
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9781447143925
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-1-4471-4393-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c287705
_d287705